IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283452.html
   My bibliography  Save this article

A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh

Author

Listed:
  • Mst Noorunnahar
  • Arman Hossain Chowdhury
  • Farhana Arefeen Mila

Abstract

In this study, we attempt to anticipate annual rice production in Bangladesh (1961–2020) using both the Autoregressive Integrated Moving Average (ARIMA) and the eXtreme Gradient Boosting (XGBoost) methods and compare their respective performances. On the basis of the lowest Corrected Akaike Information Criteria (AICc) values, a significant ARIMA (0, 1, 1) model with drift was chosen based on the findings. The drift parameter value shows that the production of rice positively trends upward. Thus, the ARIMA (0, 1, 1) model with drift was found to be significant. On the other hand, the XGBoost model for time series data was developed by changing the tunning parameters frequently with the greatest result. The four prominent error measures, such as mean absolute error (MAE), mean percentage error (MPE), root mean square error (RMSE), and mean absolute percentage error (MAPE), were used to assess the predictive performance of each model. We found that the error measures of the XGBoost model in the test set were comparatively lower than those of the ARIMA model. Comparatively, the MAPE value of the test set of the XGBoost model (5.38%) was lower than that of the ARIMA model (7.23%), indicating that XGBoost performs better than ARIMA at predicting the annual rice production in Bangladesh. Hence, the XGBoost model performs better than the ARIMA model in predicting the annual rice production in Bangladesh. Therefore, based on the better performance, the study forecasted the annual rice production for the next 10 years using the XGBoost model. According to our predictions, the annual rice production in Bangladesh will vary from 57,850,318 tons in 2021 to 82,256,944 tons in 2030. The forecast indicated that the amount of rice produced annually in Bangladesh will increase in the years to come.

Suggested Citation

  • Mst Noorunnahar & Arman Hossain Chowdhury & Farhana Arefeen Mila, 2023. "A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0283452
    DOI: 10.1371/journal.pone.0283452
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283452
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283452&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Md Siddikur Rahman & Arman Hossain Chowdhury & Miftahuzzannat Amrin, 2022. "Accuracy comparison of ARIMA and XGBoost forecasting models in predicting the incidence of COVID-19 in Bangladesh," PLOS Global Public Health, Public Library of Science, vol. 2(5), pages 1-13, May.
    2. Rahman, Mohammad Chhiddikur & Islam, Mohammad Ariful & Rahaman, Md Shajedur & Sarkar, Md Abdur Rouf & Ahmed, Rokib & Kabir, Md Shahjahan, 2021. "Identifying the Threshold Level of Flooding for Rice Production in Bangladesh: An Empirical Analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(2), pages 243-250.
    3. Md Siddikur Rahman & Arman Hossain Chowdhury, 2022. "A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-14, September.
    4. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel S. Aldosary & Baqer Al-Ramadan & Abdulla Al Kafy & Hamad Ahmed Altuwaijri & Zullyadini A. Rahaman, 2025. "Forecasting climate risk and heat stress hazards in arid ecosystems: Machine learning and ensemble models for specific humidity prediction in Dammam, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9281-9309, May.
    2. Jihong Sun & Chen Sun & Zhaowen Li & Ye Qian & Tong Li, 2024. "Prediction method of sugarcane important phenotype data based on multi-model and multi-task," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
    3. Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
    4. Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
    5. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    6. Cenk Ufuk Yıldıran & Abdurrahman Fettahoğlu, 2017. "Forecasting USDTRY rate by ARIMA method," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1335968-133, January.
    7. Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
    8. Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
    9. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    10. Jeffrey Vitale & John Robinson, 2025. "In-Season Price Forecasting in Cotton Futures Markets Using ARIMA, Neural Network, and LSTM Machine Learning Models," JRFM, MDPI, vol. 18(2), pages 1-19, February.
    11. Salehi Mahdi & Rostami Neda, 2013. "Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 8(1), pages 104-114, April.
    12. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    13. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
    14. Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
    15. Filip Stefaniuk & Robert Ślepaczuk, 2024. "The article investigates the usage of Informer architecture for building automated trading strategies for high frequency Bitcoin data. Three strategies using Informer model with different loss functio," Working Papers 2024-27, Faculty of Economic Sciences, University of Warsaw.
    16. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    17. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    18. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    19. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    20. Chlebus Marcin & Dyczko Michał & Woźniak Michał, 2021. "Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem," Central European Economic Journal, Sciendo, vol. 8(55), pages 44-62, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.