IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283092.html
   My bibliography  Save this article

Survey mode and nonresponse bias: A meta-analysis based on the data from the international social survey programme waves 1996–2018 and the European social survey rounds 1 to 9

Author

Listed:
  • Adam Rybak

Abstract

The constant increase in survey nonresponse and fieldwork costs are the reality of survey research. Together with other unpredictable events occurring in the world today, this increase poses a challenge: the necessity to accelerate a switch from face-to-face data collection to different modes, that have usually been considered to result in lower response rates. However, recent research has established that the simple response rate is a feeble measure of study quality. Therefore, this article aims to analyze the effect of survey characteristics, especially the survey mode, on the nonresponse bias. The bias measure used is the internal criteria first proposed by Sodeur and first applied by Kohler. The analysis is based on the survey documentation and results from the International Social Survey Programme waves 1996–2018 and the European Social Survey rounds 1 to 9. Random-effects three-level meta-regression models, based on data from countries from each inhabited continent, were created in order to estimate the impact of the survey mode or modes, sampling design, fieldwork experience, year of data collection, and response rate on the nonresponse bias indicator. Several ways of nesting observations within clusters were also proposed. The results suggest that using mail and some types of mixed-mode surveys were connected to lower nonresponse bias than using face-to-face mode surveys.

Suggested Citation

  • Adam Rybak, 2023. "Survey mode and nonresponse bias: A meta-analysis based on the data from the international social survey programme waves 1996–2018 and the European social survey rounds 1 to 9," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0283092
    DOI: 10.1371/journal.pone.0283092
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283092
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283092&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schouten, Barry & Shlomo, Natalie & Skinner, Chris J., 2011. "Indicators for monitoring and improving representativeness of response," LSE Research Online Documents on Economics 39121, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    2. Roberts Caroline & Vandenplas Caroline & Herzing Jessica M.E., 2020. "A Validation of R-Indicators as a Measure of the Risk of Bias using Data from a Nonresponse Follow-Up Survey," Journal of Official Statistics, Sciendo, vol. 36(3), pages 675-701, September.
    3. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.
    4. Stephanie Coffey, PhD. & Jaya Damineni & John Eltinge, PhD. & Anup Mathur, PhD. & Kayla Varela & Allison Zotti, 2023. "Some Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods," Working Papers 23-03, Center for Economic Studies, U.S. Census Bureau.
    5. Li-Chun Zhang & Ib Thomsen & Øyvin Kleven, 2013. "On the Use of Auxiliary and Paradata for Dealing With Non-sampling Errors in Household Surveys," International Statistical Review, International Statistical Institute, vol. 81(2), pages 270-288, August.
    6. Lundquist Peter & Särndal Carl-Erik, 2013. "Aspects of Responsive Design with Applications to the Swedish Living Conditions Survey," Journal of Official Statistics, Sciendo, vol. 29(4), pages 557-582, December.
    7. Aneta Chmielewska & Małgorzata Renigier-Biłozor & Artur Janowski, 2022. "Representative Residential Property Model—Soft Computing Solution," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    8. Silvia Biffignandi & Alessandro Zeli, 2021. "Longitudinal business data construction and quality: Two different approaches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 92-114, May.
    9. Olga Maslovskaya & Peter Lugtig, 2022. "Representativeness in six waves of CROss‐National Online Survey (CRONOS) panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 851-871, July.
    10. Jamie C. Moore & Gabriele B. Durrant & Peter W. F. Smith, 2021. "Do coefficients of variation of response propensities approximate non‐response biases during survey data collection?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 301-323, January.
    11. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 183-200, June.
    12. Earp Morgan & Toth Daniell & Phipps Polly & Oslund Charlotte, 2018. "Assessing Nonresponse in a Longitudinal Establishment Survey Using Regression Trees," Journal of Official Statistics, Sciendo, vol. 34(2), pages 463-481, June.
    13. Särndal Carl-Erik & Lundquist Peter, 2017. "Inconsistent Regression and Nonresponse Bias: Exploring Their Relationship as a Function of Response Imbalance," Journal of Official Statistics, Sciendo, vol. 33(3), pages 709-734, September.
    14. Barry Schouten & Fannie Cobben & Peter Lundquist & James Wagner, 2016. "Does more balanced survey response imply less non-response bias?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 727-748, June.
    15. Brick J. Michael, 2013. "Unit Nonresponse and Weighting Adjustments: A Critical Review," Journal of Official Statistics, Sciendo, vol. 29(3), pages 329-353, June.
    16. Carina Cornesse & Ulrich Krieger & Marie‐Lou Sohnius & Marina Fikel & Sabine Friedel & Tobias Rettig & Alexander Wenz & Sebastian Juhl & Roni Lehrer & Katja Möhring & Elias Naumann & Maximiliane Reife, 2022. "From German Internet Panel to Mannheim Corona Study: Adaptable probability‐based online panel infrastructures during the pandemic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 773-797, July.
    17. Osier, Guillaume, 2016. "Unit non-response in household wealth surveys," Statistics Paper Series 15, European Central Bank.
    18. Kaminska Olena & Lynn Peter, 2017. "The Implications of Alternative Allocation Criteria in Adaptive Design for Panel Surveys," Journal of Official Statistics, Sciendo, vol. 33(3), pages 781-799, September.
    19. Paiva Thais & Reiter Jerome P., 2017. "Stop or Continue Data Collection: A Nonignorable Missing Data Approach for Continuous Variables," Journal of Official Statistics, Sciendo, vol. 33(3), pages 579-599, September.
    20. Barry Schouten & Natalie Shlomo, 2017. "Selecting Adaptive Survey Design Strata with Partial R-indicators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 143-163, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.