IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278129.html
   My bibliography  Save this article

A multi-attribute method for ranking influential nodes in complex networks

Author

Listed:
  • Adib Sheikhahmadi
  • Farshid Veisi
  • Amir Sheikhahmadi
  • Shahnaz Mohammadimajd

Abstract

Calculating the importance of influential nodes and ranking them based on their diffusion power is one of the open issues and critical research fields in complex networks. It is essential to identify an attribute that can compute and rank the diffusion power of nodes with high accuracy, despite the plurality of nodes and many relationships between them. Most methods presented only use one structural attribute to capture the influence of individuals, which is not entirely accurate in most networks. The reason is that network structures are disparate, and these methods will be inefficient by altering the network. A possible solution is to use more than one attribute to examine the characteristics aspect and address the issue mentioned. Therefore, this study presents a method for identifying and ranking node’s ability to spread information. The purpose of this study is to present a multi-attribute decision making approach for determining diffusion power and classification of nodes, which uses several local and semi-local attributes. Local and semi-local attributes with linear time complexity are used, considering different aspects of the network nodes. Evaluations performed on datasets of real networks demonstrate that the proposed method performs satisfactorily in allocating distinct ranks to nodes; moreover, as the infection rate of nodes increases, the accuracy of the proposed method increases.

Suggested Citation

  • Adib Sheikhahmadi & Farshid Veisi & Amir Sheikhahmadi & Shahnaz Mohammadimajd, 2022. "A multi-attribute method for ranking influential nodes in complex networks," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0278129
    DOI: 10.1371/journal.pone.0278129
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278129
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278129&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    2. Wang, Feifei & Sun, Zejun & Gan, Quan & Fan, Aiwan & Shi, Hesheng & Hu, Haifeng, 2022. "Influential node identification by aggregating local structure information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    2. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Conde, Rita & Casais, Beatriz, 2023. "Micro, macro and mega-influencers on instagram: The power of persuasion via the parasocial relationship," Journal of Business Research, Elsevier, vol. 158(C).
    5. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    8. Zhu, Xiaoyu & Hao, Rongxia, 2024. "Identifying influential nodes in social networks via improved Laplacian centrality," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    9. Maihami, Vafa & Yaghmaee, Farzin, 2018. "Automatic image annotation using community detection in neighbor images," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 123-132.
    10. Su, Zhen & Liu, Fanzhen & Gao, Chao & Gao, Shupeng & Li, Xianghua, 2018. "Inferring infection rate based on observations in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 170-176.
    11. Ma, Ning & Liu, Yijun & Chi, Yuxue, 2018. "Influencer discovery algorithm in a multi-relational network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 415-425.
    12. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    13. Zhang, Qi & Li, Meizhu, 2022. "A betweenness structural entropy of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Al-Azim, Nouran Ayman R. Abd & Gharib, Tarek F. & Afify, Yasmine & Hamdy, Mohamed, 2020. "Influence propagation: Interest groups and node ranking models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    15. Wang, Longyun & Mou, Jianhong & Dai, Bitao & Tan, Suoyi & Cai, Mengsi & Chen, Huan & Jin, Zhen & Sun, Guiquan & Lu, Xin, 2024. "Influential nodes identification based on hierarchical structure," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    16. Guo, Haoming & Wang, Shuangling & Yan, Xuefeng & Zhang, Kecheng, 2024. "Node importance evaluation method of complex network based on the fusion gravity model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    17. Zhang, Zhaobo & Li, Meizhu & Zhang, Qi, 2024. "A clustering coefficient structural entropy of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    18. Jiaqi Li & Jiali You & Haojiang Deng, 2022. "Adjacency-Information-Entropy-Based Cooperative Name Resolution Approach in ICN," Future Internet, MDPI, vol. 14(3), pages 1-22, February.
    19. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    20. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.