IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007793.html
   My bibliography  Save this article

Influential nodes identification based on hierarchical structure

Author

Listed:
  • Wang, Longyun
  • Mou, Jianhong
  • Dai, Bitao
  • Tan, Suoyi
  • Cai, Mengsi
  • Chen, Huan
  • Jin, Zhen
  • Sun, Guiquan
  • Lu, Xin

Abstract

Identifying influential nodes is an important research topic in complex network analysis, with significant implications for understanding and controlling propagation processes. While extant methods for assessing node influence rely heavily on network topology, often overlooking the dynamic interactions and propagation patterns within networks. In this paper, we propose the Hierarchical Structure Influence (HSI) method. The HSI method evaluates the potential outbreak size of nodes by modeling their infection sequences and paths according to a network’s hierarchical structure, and integrating propagation probabilities to estimate these outbreak sizes accurately. It accounts for infections occurring across different node layers, intra-layer, and heterogeneous infection routes of varying lengths. To validate its effectiveness, HSI is compared with seven state-of-the-art methods across nine real-world networks. Experimental results reveal that HSI outperforms other methods in terms of ranking accuracy, top-k nodes, and distinguishing ability. Furthermore, HSI exhibits high consistency in evaluating node outbreak sizes when compared to SIR simulations. Our method offers valuable insights that can be leveraged for network management and the development of intervention strategies.

Suggested Citation

  • Wang, Longyun & Mou, Jianhong & Dai, Bitao & Tan, Suoyi & Cai, Mengsi & Chen, Huan & Jin, Zhen & Sun, Guiquan & Lu, Xin, 2024. "Influential nodes identification based on hierarchical structure," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007793
    DOI: 10.1016/j.chaos.2024.115227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    2. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Hadia Ahmed & T. C. Howton & Yali Sun & Natascha Weinberger & Youssef Belkhadir & M. Shahid Mukhtar, 2018. "Network biology discovers pathogen contact points in host protein-protein interactomes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    5. Mile Šikić & Alen Lančić & Nino Antulov-Fantulin & Hrvoje Štefančić, 2013. "Epidemic centrality — is there an underestimated epidemic impact of network peripheral nodes?," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-13, October.
    6. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    7. Ai, Jun & He, Tao & Su, Zhan & Shang, Lihui, 2022. "Identifying influential nodes in complex networks based on spreading probability," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Gao, Shuai & Ma, Jun & Chen, Zhumin & Wang, Guanghui & Xing, Changming, 2014. "Ranking the spreading ability of nodes in complex networks based on local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 130-147.
    9. Jean-François Rual & Kavitha Venkatesan & Tong Hao & Tomoko Hirozane-Kishikawa & Amélie Dricot & Ning Li & Gabriel F. Berriz & Francis D. Gibbons & Matija Dreze & Nono Ayivi-Guedehoussou & Niels Klitg, 2005. "Towards a proteome-scale map of the human protein–protein interaction network," Nature, Nature, vol. 437(7062), pages 1173-1178, October.
    10. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    4. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    5. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    6. Wang, Yan & Zhang, Ling & Yang, Junwen & Yan, Ming & Li, Haozhan, 2024. "Multi-factor information matrix: A directed weighted method to identify influential nodes in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Zhao, Jie & Wang, Zhen & Yu, Dengxiu & Cao, Jinde & Cheong, Kang Hao, 2024. "Swarm intelligence for protecting sensitive identities in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    10. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    12. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    13. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    15. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    16. Youjin Lee & Ashley L. Buchanan & Elizabeth L. Ogburn & Samuel R. Friedman & M. Elizabeth Halloran & Natallia V. Katenka & Jing Wu & Georgios K. Nikolopoulos, 2023. "Finding influential subjects in a network using a causal framework," Biometrics, The International Biometric Society, vol. 79(4), pages 3715-3727, December.
    17. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    18. Salavati, Chiman & Abdollahpouri, Alireza & Manbari, Zhaleh, 2018. "BridgeRank: A novel fast centrality measure based on local structure of the network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 635-653.
    19. Zhang, Ting & Zhang, Kun & Lv, Laishui & Bardou, Dalal, 2019. "Co-Ranking for nodes, layers and timestamps in multilayer temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 88-96.
    20. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.