IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277257.html
   My bibliography  Save this article

Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments

Author

Listed:
  • Caroline L Alves
  • Rubens Gisbert Cury
  • Kirstin Roster
  • Aruane M Pineda
  • Francisco A Rodrigues
  • Christiane Thielemann
  • Manuel Ciba

Abstract

Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the inhabitants of this region for hundreds of years. Furthermore, this plant has been demonstrated to be a viable therapy for a variety of neurological and mental diseases. EEG experiments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B). Further, at the abstraction level of (C), we developed new measures of complex networks relating to community detection. As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important for the detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is consistent with the literature. F3 and PO4 were the most important brain connections, a significant new discovery for psychedelic literature. This connection may point to a cognitive process akin to face recognition in individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assortativity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer’s disease, indicating a possible therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and suggested larger brain communities associated with the use of ayahuasca. This suggests that the dissemination of information in functional brain networks is slower when this drug is present. Overall, our methodology was able to automatically detect changes in brain activity during ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as provide insights into their mechanisms of action.

Suggested Citation

  • Caroline L Alves & Rubens Gisbert Cury & Kirstin Roster & Aruane M Pineda & Francisco A Rodrigues & Christiane Thielemann & Manuel Ciba, 2022. "Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-26, December.
  • Handle: RePEc:plo:pone00:0277257
    DOI: 10.1371/journal.pone.0277257
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277257
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277257&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juergen Dukart & Susanne Weis & Sarah Genon & Simon B. Eickhoff, 2021. "Towards increasing the clinical applicability of machine learning biomarkers in psychiatry," Nature Human Behaviour, Nature, vol. 5(4), pages 431-432, April.
    2. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    3. Thomas F Varley & Michael Craig & Ram Adapa & Paola Finoia & Guy Williams & Judith Allanson & John Pickard & David K Menon & Emmanuel A Stamatakis, 2020. "Fractal dimension of cortical functional connectivity networks & severity of disorders of consciousness," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-20, February.
    4. Eugenio Rodriguez & Nathalie George & Jean-Philippe Lachaux & Jacques Martinerie & Bernard Renault & Francisco J. Varela, 1999. "Perception's shadow: long-distance synchronization of human brain activity," Nature, Nature, vol. 397(6718), pages 430-433, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sallum, Loriz Francisco & Alves, Caroline L. & de O. Toutain, Thaise G.L. & Porto, Joel Augusto Moura & Thielemann, Christiane & Rodrigues, Francisco A., 2025. "Revealing patterns in major depressive disorder with machine learning and networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priscilla E Greenwood & Lawrence M Ward, 2024. "Attentional selection and communication through coherence: Scope and limitations," PLOS Computational Biology, Public Library of Science, vol. 20(8), pages 1-23, August.
    2. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    4. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    5. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    6. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    7. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    8. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    9. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    10. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    11. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    12. Dong, Xianzhou & Guo, Weiyong & Zhou, Cheng & Luo, Yongqiang & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2024. "Hybrid model for robust and accurate forecasting building electricity demand combining physical and data-driven methods," Energy, Elsevier, vol. 311(C).
    13. Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
    14. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    15. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    16. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    17. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    18. José M. Liceaga-Ortiz-De-La-Peña & Jorge A. Ruiz-Vanoye & Juan M. Xicoténcatl-Pérez & Ocotlán Díaz-Parra & Alejandro Fuentes-Penna & Ricardo A. Barrera-Cámara & Daniel Robles-Camarillo & Marco A. Márq, 2025. "Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services," Energies, MDPI, vol. 18(12), pages 1-33, June.
    19. Xiaoyu Liu & Jiangfeng Song & Hai Tao & Peng Wang & Haihua Mo & Wenjie Du, 2025. "Quarter-Hourly Power Load Forecasting Based on a Hybrid CNN-BiLSTM-Attention Model with CEEMDAN, K-Means, and VMD," Energies, MDPI, vol. 18(11), pages 1-29, May.
    20. Han Qiu & Rong Hu & Jiaqing Chen & Zihao Yuan, 2025. "Short-Term Electricity Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Improved Sparrow Search Algorithm–Convolutional Neural Network–Bidirectional Lon," Mathematics, MDPI, vol. 13(5), pages 1-32, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.