Author
Listed:
- Javier Falces Marin
- David Díaz Pardo de Vera
- Eduardo Lopez Gonzalo
Abstract
Market making is a high-frequency trading problem for which solutions based on reinforcement learning (RL) are being explored increasingly. This paper presents an approach to market making using deep reinforcement learning, with the novelty that, rather than to set the bid and ask prices directly, the neural network output is used to tweak the risk aversion parameter and the output of the Avellaneda-Stoikov procedure to obtain bid and ask prices that minimise inventory risk. Two further contributions are, first, that the initial parameters for the Avellaneda-Stoikov equations are optimised with a genetic algorithm, which parameters are also used to create a baseline Avellaneda-Stoikov agent (Gen-AS); and second, that state-defining features forming the RL agent’s neural network input are selected based on their relative importance by means of a random forest. Two variants of the deep RL model (Alpha-AS-1 and Alpha-AS-2) were backtested on real data (L2 tick data from 30 days of bitcoin–dollar pair trading) alongside the Gen-AS model and two other baselines. The performance of the five models was recorded through four indicators (the Sharpe, Sortino and P&L-to-MAP ratios, and the maximum drawdown). Gen-AS outperformed the two other baseline models on all indicators, and in turn the two Alpha-AS models substantially outperformed Gen-AS on Sharpe, Sortino and P&L-to-MAP. Localised excessive risk-taking by the Alpha-AS models, as reflected in a few heavy dropdowns, is a source of concern for which possible solutions are discussed.
Suggested Citation
Javier Falces Marin & David Díaz Pardo de Vera & Eduardo Lopez Gonzalo, 2022.
"A reinforcement learning approach to improve the performance of the Avellaneda-Stoikov market-making algorithm,"
PLOS ONE, Public Library of Science, vol. 17(12), pages 1-32, December.
Handle:
RePEc:plo:pone00:0277042
DOI: 10.1371/journal.pone.0277042
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277042. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.