IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0276181.html
   My bibliography  Save this article

Modeling of COVID-19 vaccination rate using odd Lomax inverted Nadarajah-Haghighi distribution

Author

Listed:
  • Hisham M Almongy
  • Ehab M Almetwally
  • Hanan Haj Ahmad
  • Abdullah H. Al-nefaie

Abstract

Since the spread of COVID-19 pandemic in early 2020, modeling the related factors became mandatory, requiring new families of statistical distributions to be formulated. In the present paper we are interested in modeling the vaccination rate in some African countries. The recorded data in these countries show less vaccination rate, which will affect the spread of new active cases and will increase the mortality rate. A new extension of the inverted Nadarajah-Haghighi distribution is considered, which has four parameters and is obtained by combining the inverted Nadarajah-Haghighi distribution and the odd Lomax-G family. The proposed distribution is called the odd Lomax inverted Nadarajah-Haghighi (OLINH) distribution. This distribution owns many virtuous characteristics and attractive statistical properties, such as, the simple linear representation of density function, the flexibility of the hazard rate curve and the odd ratio of failure, in addition to other properties related to quantile, the rth-moment, moment generating function, Rényi entropy, and the function of ordered statistics. In this paper we address the problem of parameter estimation from frequentest and Bayesian approach, accordingly a comparison between the performance of the two estimation methods is implemented using simulation analysis and some numerical techniques. Finally different goodness of fit measures are used for modeling the COVID-19 vaccination rate, which proves the suitability of the OLINH distribution over other competitive distributions.

Suggested Citation

  • Hisham M Almongy & Ehab M Almetwally & Hanan Haj Ahmad & Abdullah H. Al-nefaie, 2022. "Modeling of COVID-19 vaccination rate using odd Lomax inverted Nadarajah-Haghighi distribution," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-24, October.
  • Handle: RePEc:plo:pone00:0276181
    DOI: 10.1371/journal.pone.0276181
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276181
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0276181&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0276181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
    2. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    3. Abdul Ghaniyyu Abubakari & Claudio Chadli Kandza-Tadi & Ridwan Rufai Dimmua, 2020. "Extended Odd Lomax Family of Distributions: Properties and Applications," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 331-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    2. Ali Doostmoradi, 2018. "A New Distribution with two parameters to Lifetime Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 30-35, September.
    3. Salem A. Alyami & Ibrahim Elbatal & Naif Alotaibi & Ehab M. Almetwally & Mohammed Elgarhy, 2022. "Modeling to Factor Productivity of the United Kingdom Food Chain: Using a New Lifetime-Generated Family of Distributions," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    4. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    5. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    6. C. Satheesh Kumar & Subha R. Nair, 2021. "A generalization to the log-inverse Weibull distribution and its applications in cancer research," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-30, December.
    7. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    8. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.
    9. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    10. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    11. Sarah R. Al-Dawsari & Khalaf S. Sultan, 2021. "Inverted Weibull Regression Models and Their Applications," Stats, MDPI, vol. 4(2), pages 1-22, April.
    12. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    13. Barreto-Souza, Wagner, 2012. "Bivariate gamma-geometric law and its induced Lévy process," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 130-145.
    14. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    15. Shovan Chowdhury & Asok K Nanda, 2015. "A special class of distorted premium principle based on an extension of the exponential-geometric distribution," Working papers 188, Indian Institute of Management Kozhikode.
    16. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    17. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    18. Beatriz R. Lanjoni & Edwin M. M. Ortega & Gauss M. Cordeiro, 2016. "Extended Burr XII Regression Models: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 203-224, March.
    19. Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear modal regression for dependent data with application for predicting COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
    20. Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0276181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.