IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272263.html
   My bibliography  Save this article

Burst ratio for a versatile traffic model

Author

Listed:
  • Andrzej Chydzinski

Abstract

We deal with a finite-buffer queue, in which arriving jobs are subject to loss due to buffer overflows. The burst ratio parameter, which reflects the tendency of losses to form long series, is studied in detail. Perhaps the most versatile model of the arrival stream is used, i.e. the batch Markovian arrival process (BMAP). Among other things, it enables modeling the interarrival time density function, the interarrival time autocorrelation function and batch arrivals. The main contribution in an exact formula for the burst ratio in a queue with BMAP arrivals and arbitrary service time distribution. The formula is presented in an explicite, ready-to-use form. Additionally, the impact of various system parameters on the burst ratio is demonstrated in numerical examples. The primary application area of the results is computer networking, where the complex nature of traffic has a deep impact on the burst ratio. However, due to the versatile arrival model, the results can be applied in other fields as well.

Suggested Citation

  • Andrzej Chydzinski, 2022. "Burst ratio for a versatile traffic model," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-19, August.
  • Handle: RePEc:plo:pone00:0272263
    DOI: 10.1371/journal.pone.0272263
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272263
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272263&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
    2. Andrzej Chydzinski & Dominik Samociuk, 2019. "Burst ratio in a single-server queue," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(2), pages 263-276, February.
    3. Lukasz Chrost & Andrzej Chydzinski, 2016. "On the deterministic approach to active queue management," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(1), pages 27-44, September.
    4. Andrzej Chydzinski & Pawel Mrozowski, 2016. "Queues with Dropping Functions and General Arrival Processes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-23, March.
    5. Chydzinski, Andrzej & Samociuk, Dominik & Adamczyk, Blazej, 2018. "Burst ratio in the finite-buffer queue with batch Poisson arrivals," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 225-238.
    6. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    7. Chydzinski, Andrzej, 2022. "On the structure of data losses induced by an overflowed buffer," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chydzinski, Andrzej, 2022. "Per-flow structure of losses in a finite-buffer queue," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    2. Andrzej Chydzinski & Pawel Mrozowski, 2016. "Queues with Dropping Functions and General Arrival Processes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-23, March.
    3. Chydzinski, Andrzej & Adamczyk, Blazej, 2020. "Response time of the queue with the dropping function," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Chydzinski, Andrzej, 2022. "On the structure of data losses induced by an overflowed buffer," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    5. Marek Barczyk & Andrzej Chydzinski, 2022. "AQM based on the queue length: A real-network study," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
    6. Andrzej Chydzinski, 2021. "On the stability of queues with the dropping function," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    7. Ghasem Kahe & Amir Hossein Jahangir, 2019. "A self-tuning controller for queuing delay regulation in TCP/AQM networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(2), pages 215-229, June.
    8. Hautphenne, Sophie & Fackrell, Mark, 2014. "An EM algorithm for the model fitting of Markovian binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 19-34.
    9. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    10. Dimitri frosinin & L. Breuer, 2006. "Threshold policies for controlled retrial queues with heterogeneous servers," Annals of Operations Research, Springer, vol. 141(1), pages 139-162, January.
    11. Yera Mora, Yoel Gustavo & Lillo Rodríguez, Rosa Elvira & Ramírez-Cobo, Pepa, 2017. "Findings about the two-state BMMPP for modeling point processes in reliability and queueing systems," DES - Working Papers. Statistics and Econometrics. WS 24622, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Lin, Lei & Wang, Qian & Sadek, Adel W., 2014. "Border crossing delay prediction using transient multi-server queueing models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 65-91.
    13. Souvik Ghosh & A. D. Banik & Joris Walraevens & Herwig Bruneel, 2022. "A detailed note on the finite-buffer queueing system with correlated batch-arrivals and batch-size-/phase-dependent bulk-service," 4OR, Springer, vol. 20(2), pages 241-272, June.
    14. B. Houdt & J. Velthoven & C. Blondia, 2008. "QBD Markov chains on binomial-like trees and its application to multilevel feedback queues," Annals of Operations Research, Springer, vol. 160(1), pages 3-18, April.
    15. Andrzej Chydzinski & Blazej Adamczyk, 2019. "Queues with the dropping function and general service time," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-21, July.
    16. Lina He & Hairui Zhou, 2017. "Robust Lyapunov–Krasovskii based design for explicit control protocol against heterogeneous delays," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(3), pages 377-392, November.
    17. Chanintorn Jittawiriyanukoon & Vilasinee Srisarkun, 2020. "Cost Minimization for Unstable Concurrent Products in Multi-stage Production Line Using Queueing Analysis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 230-238.
    18. Casale, Giuliano & Sansottera, Andrea & Cremonesi, Paolo, 2016. "Compact Markov-modulated models for multiclass trace fitting," European Journal of Operational Research, Elsevier, vol. 255(3), pages 822-833.
    19. Konovalov, Mikhail & Razumchik, Rostislav, 2023. "Finite capacity single-server queue with Poisson input, general service and delayed renovation," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1075-1083.
    20. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.