IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271891.html
   My bibliography  Save this article

Enhancing the scalability of distance-based link prediction algorithms in recommender systems through similarity selection

Author

Listed:
  • Zhan Su
  • Zhong Huang
  • Jun Ai
  • Xuanxiong Zhang
  • Lihui Shang
  • Fengyu Zhao

Abstract

Slope One algorithm and its descendants measure user-score distance and use the statistical score distance between users to predict unknown ratings, as opposed to the typical collaborative filtering algorithm that uses similarity for neighbor selection and prediction. Compared to collaborative filtering systems that select only similar neighbors, algorithms based on user-score distance typically include all possible related users in the process, which needs more computation time and requires more memory. To improve the scalability and accuracy of distance-based recommendation algorithm, we provide a user-item link prediction approach that combines user distance measurement with similarity-based user selection. The algorithm predicts unknown ratings based on the filtered users by calculating user similarity and removing related users with similarity below a threshold, which reduces 26 to 29 percent of neighbors and improves prediction error, ranking, and prediction accuracy overall.

Suggested Citation

  • Zhan Su & Zhong Huang & Jun Ai & Xuanxiong Zhang & Lihui Shang & Fengyu Zhao, 2022. "Enhancing the scalability of distance-based link prediction algorithms in recommender systems through similarity selection," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0271891
    DOI: 10.1371/journal.pone.0271891
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271891
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271891&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Ai & Yayun Liu & Zhan Su & Fengyu Zhao & Dunlu Peng, 2021. "K-core decomposition in recommender systems improves accuracy of rating prediction," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(07), pages 1-18, July.
    2. Edelmann, Dominic & Móri, Tamás F. & Székely, Gábor J., 2021. "On relationships between the Pearson and the distance correlation coefficients," Statistics & Probability Letters, Elsevier, vol. 169(C).
    3. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan Su & Haochuan Yang & Jun Ai, 2023. "FPLV: Enhancing recommender systems with fuzzy preference, vector similarity, and user community for rating prediction," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai, Jun & Cai, Yifang & Su, Zhan & Zhang, Kuan & Peng, Dunlu & Chen, Qingkui, 2022. "Predicting user-item links in recommender systems based on similarity-network resource allocation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Park, Jinhee & Ahn, Hyeongjin & Kim, Dongjae & Park, Eunil, 2024. "GNN-IR: Examining graph neural networks for influencer recommendations in social media marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    4. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    5. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    7. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    8. Ricardo S. Santos & Jose Soares & Pedro Carmona Marques & Helena V. G. Navas & José Moleiro Martins, 2021. "Integrating Business, Social, and Environmental Goals in Open Innovation through Partner Selection," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    9. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    10. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    11. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    12. Yue Shen & Yixin Ren & Yiwen Zhang, 2024. "Evolution mechanism of industrial network in Yangtze River Delta region from the perspective of link prediction," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-27, September.
    13. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    15. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    17. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    18. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    19. Xie He & Amir Ghasemian & Eun Lee & Alice C Schwarze & Aaron Clauset & Peter J Mucha, 2024. "Link prediction accuracy on real-world networks under non-uniform missing-edge patterns," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.
    20. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.