IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271766.html
   My bibliography  Save this article

Disentangling personalized treatment effects from “time-of-the-day” confounding in mobile health studies

Author

Listed:
  • Elias Chaibub Neto
  • Thanneer M Perumal
  • Abhishek Pratap
  • Aryton Tediarjo
  • Brian M Bot
  • Lara Mangravite
  • Larsson Omberg

Abstract

Ideally, a patient’s response to medication can be monitored by measuring changes in performance of some activity. In observational studies, however, any detected association between treatment (“on-medication” vs “off-medication”) and the outcome (performance in the activity) might be due to confounders. In particular, causal inferences at the personalized level are especially vulnerable to confounding effects that arise in a cyclic fashion. For quick acting medications, effects can be confounded by circadian rhythms and daily routines. Using the time-of-the-day as a surrogate for these confounders and the performance measurements as captured on a smartphone, we propose a personalized statistical approach to disentangle putative treatment and “time-of-the-day” effects, that leverages conditional independence relations spanned by causal graphical models involving the treatment, time-of-the-day, and outcome variables. Our approach is based on conditional independence tests implemented via standard and temporal linear regression models. Using synthetic data, we investigate when and how residual autocorrelation can affect the standard tests, and how time series modeling (namely, ARIMA and robust regression via HAC covariance matrix estimators) can remedy these issues. In particular, our simulations illustrate that when patients perform their activities in a paired fashion, positive autocorrelation can lead to conservative results for the standard regression approach (i.e., lead to deflated true positive detection), whereas negative autocorrelation can lead to anticonservative behavior (i.e., lead to inflated false positive detection). The adoption of time series methods, on the other hand, leads to well controlled type I error rates. We illustrate the application of our methodology with data from a Parkinson’s disease mobile health study.

Suggested Citation

  • Elias Chaibub Neto & Thanneer M Perumal & Abhishek Pratap & Aryton Tediarjo & Brian M Bot & Lara Mangravite & Larsson Omberg, 2022. "Disentangling personalized treatment effects from “time-of-the-day” confounding in mobile health studies," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-25, August.
  • Handle: RePEc:plo:pone00:0271766
    DOI: 10.1371/journal.pone.0271766
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271766
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271766&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    3. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    4. Rho, Seung-Hwa & Vogelsang, Timothy J., 2019. "Heteroskedasticity Autocorrelation Robust Inference In Time Series Regressions With Missing Data," Econometric Theory, Cambridge University Press, vol. 35(3), pages 601-629, June.
    5. Hoover, Kevin D., 2005. "Automatic Inference Of The Contemporaneous Causal Order Of A System Of Equations," Econometric Theory, Cambridge University Press, vol. 21(1), pages 69-77, February.
    6. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Fruehwirt, Wolfgang & Hochfilzer, Leonhard & Weydemann, Leonard & Roberts, Stephen, 2021. "Cumulation, crash, coherency: A cryptocurrency bubble wavelet analysis," Finance Research Letters, Elsevier, vol. 40(C).
    4. Smith, Geoffrey Peter, 2024. "Why do firms with no leverage still have leverage and volatility feedback effects?," Journal of Empirical Finance, Elsevier, vol. 78(C).
    5. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    6. Ding, Peng, 2021. "The Frisch–Waugh–Lovell theorem for standard errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    7. Leiss, Matthias & Nax, Heinrich H., 2018. "Option-implied objective measures of market risk," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 241-249.
    8. F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
    9. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    10. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    11. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    12. Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.
    13. Joseph Ross, 2021. "Stationarity Statistics on Rolling Windows," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 655-691, February.
    14. repec:jss:jstsof:16:i09 is not listed on IDEAS
    15. repec:jss:jstsof:27:i01 is not listed on IDEAS
    16. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
    17. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    18. Christopher Kath, 2019. "Modeling Intraday Markets under the New Advances of the Cross-Border Intraday Project (XBID): Evidence from the German Intraday Market," Energies, MDPI, vol. 12(22), pages 1-35, November.
    19. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    20. Kirman, Alan P. & Laisney, François & Pezanis-Christou, Paul, 2018. "Exploration vs exploitation, impulse balance equilibrium, and a specification test for the El Farol bar problem," ZEW Discussion Papers 18-038, ZEW - Leibniz Centre for European Economic Research.
    21. Lucio Capitani & Leo Pasquazzi, 2015. "Inference for performance measures for financial assets," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 73-98, April.
    22. Preinerstorfer, David, 2014. "Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators," MPRA Paper 58333, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.