IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0269195.html
   My bibliography  Save this article

Stock index trend prediction based on TabNet feature selection and long short-term memory

Author

Listed:
  • Xiaolu Wei
  • Hongbing Ouyang
  • Muyan Liu

Abstract

In this study, we propose a predictive model TabLSTM that combines machine learning methods such as TabNet and Long Short-Term Memory Neural Network (LSTM) with a complete factor library for stock index trend prediction. Our motivation is based on the notion that there are numerous interrelated factors in the stock market, and the factors that affect each stock are different. Therefore, a complete factor library and an efficient feature selection technique are necessary to predict stock index. In this paper, we first build a factor database that includes macro, micro and technical indicators. Successively, we calculate the factor importance through TabNet and rank them. Based on a prespecified threshold, the optimal factors set will include only the highest-ranked factors. Finally, using the optimal factors set as input information, LSTM is employed to predict the future trend of 4 stock indices. Empirical validation of the model shows that the combination of TabNet for factors selection and LSTM outperforms existing methods. Moreover, constructing a factor database is necessary for stock index prediction. The application of our method does not only show the feasibility to predict stock indices across different financial markets, yet it also provides an complete factor database and a comprehensive architecture for stock index trend prediction, which may provide some references for stock forecasting and quantitative investments.

Suggested Citation

  • Xiaolu Wei & Hongbing Ouyang & Muyan Liu, 2022. "Stock index trend prediction based on TabNet feature selection and long short-term memory," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0269195
    DOI: 10.1371/journal.pone.0269195
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269195
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0269195&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0269195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F, 1976. "Efficient Capital Markets: Reply," Journal of Finance, American Finance Association, vol. 31(1), pages 143-145, March.
    2. Xi Zhang & Yunjia Zhang & Senzhang Wang & Yuntao Yao & Binxing Fang & Philip S. Yu, 2018. "Improving Stock Market Prediction via Heterogeneous Information Fusion," Papers 1801.00588, arXiv.org.
    3. Bhushan, Ravi, 1989. "Collection of information about publicly traded firms : Theory and evidence," Journal of Accounting and Economics, Elsevier, vol. 11(2-3), pages 183-206, July.
    4. Ribeiro, Pedro Pires & Cermeño, Rodolfo & Curto, José Dias, 2017. "Sovereign bond markets and financial volatility dynamics: Panel-GARCH evidence for six euro area countries," Finance Research Letters, Elsevier, vol. 21(C), pages 107-114.
    5. Lakonishok, Josef & Shleifer, Andrei & Vishny, Robert W, 1994. "Contrarian Investment, Extrapolation, and Risk," Journal of Finance, American Finance Association, vol. 49(5), pages 1541-1578, December.
    6. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    7. Jonathan Brogaard & Lili Dai & Phong T H Ngo & Bohui Zhang, 2020. "Global Political Uncertainty and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1737-1780.
    8. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    9. Jonathan Brogaard & Lili Dai & Phong T H Ngo & Bohui Zhang, 2020. "Global Political Uncertainty and Asset Prices," Review of Finance, European Finance Association, vol. 33(4), pages 1737-1780.
    10. Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
    11. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    12. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LLC, vol. 3(3), pages 278-294, September.
    13. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    14. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolu Wei & Yubo Tian & Na Li & Huanxin Peng, 2024. "Evaluating ensemble learning techniques for stock index trend prediction: a case of China," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 505-530, September.
    2. Paul Gompers & Joy Ishii & Andrew Metrick, 2003. "Corporate Governance and Equity Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 107-156.
    3. Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
    4. Gala, Vito D. & Pagliardi, Giovanni & Zenios, Stavros A., 2023. "Global political risk and international stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 78-102.
    5. Guo, Hui, 2006. "Time-varying risk premia and the cross section of stock returns," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2087-2107, July.
    6. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    7. Hanauer, Matthias X. & Lauterbach, Jochim G., 2019. "The cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 38(C), pages 265-286.
    8. Artmann, Sabine & Finter, Philipp & Kempf, Alexander, 2010. "Determinants of expected stock returns: Large sample evidence from the German market," CFR Working Papers 10-01, University of Cologne, Centre for Financial Research (CFR).
    9. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    10. Nobel Prize Committee, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    11. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2010. "Asset-pricing anomalies and spanning: Multivariate and multifactor tests with heavy-tailed distributions," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 763-782, September.
    12. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    13. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    14. Angelidis, Timotheos & Tessaromatis, Nikolaos, 2014. "Global Style Portfolios Based on Country Indices," MPRA Paper 53094, University Library of Munich, Germany.
    15. Waszczuk, Antonina, 2013. "A risk-based explanation of return patterns—Evidence from the Polish stock market," Emerging Markets Review, Elsevier, vol. 15(C), pages 186-210.
    16. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    17. Hoang, Khoa & Cannavan, Damien & Gaunt, Clive & Huang, Ronghong, 2019. "Is that factor just lucky? Australian evidence," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    18. Kaserer Christoph & Hanauer Matthias X., 2017. "25 Jahre Fama-French-Modell: Erklärungsgehalt, Anomalien und praktische Implikationen," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(2), pages 98-116, June.
    19. Zura Kakushadze & Jim Kyung-Soo Liew, 2014. "Custom v. Standardized Risk Models," Papers 1409.2575, arXiv.org, revised May 2015.
    20. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.