IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0268221.html
   My bibliography  Save this article

Partially Recursively Induced Structured Moderation (PRISM) for modeling racial differences in endometrial cancer survival

Author

Listed:
  • J Sunil Rao
  • Erin Kobetz
  • Huilin Yu
  • Jordan Baeker-Bispo
  • Zinzi Bailey

Abstract

Purpose: Health disparities are driven by a complex interplay of determinants operating across multiple levels of influence. However, while recognized conceptually, much disparities research fails to capture this inherent complexity in study focus and/or design; little of such work accounts for the interplay across the multiple levels of influence from structural (contextual) to biological or clinical. We developed a novel modeling framework that addresses these challenges and provides new insights. Methods: We used data from the Florida Cancer Data System on endometrial cancer patients and geocoded-derived social determinants of health to demonstrate the applicability of a new modeling paradigm we term PRISM regression. PRISM is a new highly interpretable tree-based modeling framework that allows for automatic discovery of potentially non-linear hierarchical interactions between health determinants at multiple levels and differences in survival outcomes between groups of interest, including through a new specific area-level disparity estimate (SPADE) incorporating these multilevel influences. Results: PRISM demonstrates that hierarchical influences on racial disparity in endometrial cancer survival appear to be statistically relevant and that these better predict survival differences than only using individual level determinants. The interpretability of the models allows more careful inspection of the nature of these hierarchical effects on disparity. Additionally, SPADE estimates show distinct geographical patterns across census tracts in Florida. Conclusion: PRISM can provide a powerful new modeling framework with which to better understand racial disparities in cancer survival.

Suggested Citation

  • J Sunil Rao & Erin Kobetz & Huilin Yu & Jordan Baeker-Bispo & Zinzi Bailey, 2023. "Partially Recursively Induced Structured Moderation (PRISM) for modeling racial differences in endometrial cancer survival," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-19, January.
  • Handle: RePEc:plo:pone00:0268221
    DOI: 10.1371/journal.pone.0268221
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268221
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0268221&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0268221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Izquierdo, J.N. & Schoenbach, V.J., 2000. "The potential and limitations of data from population-based state cancer registries," American Journal of Public Health, American Public Health Association, vol. 90(5), pages 695-698.
    2. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    3. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    2. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    3. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    4. Paul Janssen & Noël Veraverbeke, 2024. "Nonparametric estimation of univariate and bivariate survival functions under right censoring: a survey," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(3), pages 211-245, April.
    5. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    6. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    7. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    8. Wenceslao González Manteiga & Cédric Heuchenne & César Sánchez Sellero & Alessandro Beretta, 2020. "Goodness-of-fit tests for censored regression based on artificial data points," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 599-615, June.
    9. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    10. Uña-Álvarez, Jacobo de & González-Manteiga, Wenceslao, 1999. "Strong consistency under proportional censorship when covariables are present," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 283-292, April.
    11. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.
    12. Zhang, Chun-Xia & Mei, Chang-Lin & Zhang, Jiang-She, 2007. "An empirical study of a test for polynomial relationships in randomly right censored regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6543-6556, August.
    13. Xiaochao Xia & Binyan Jiang & Jialiang Li & Wenyang Zhang, 2016. "Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 547-569, October.
    14. Khan Md Hasinur Rahaman & Bhadra Anamika & Howlader Tamanna, 2019. "Stability selection for lasso, ridge and elastic net implemented with AFT models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
    15. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
    16. Ma, Shuangge & Dai, Ying & Huang, Jian & Xie, Yang, 2012. "Identification of breast cancer prognosis markers via integrative analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2718-2728.
    17. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    18. Dong, Yan & Li, Daoji & Zheng, Zemin & Zhou, Jia, 2022. "Reproducible feature selection in high-dimensional accelerated failure time models," Statistics & Probability Letters, Elsevier, vol. 181(C).
    19. V. Kohestani & M. Hassanlourad & A. Ardakani, 2015. "Evaluation of liquefaction potential based on CPT data using random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1079-1089, November.
    20. Nassira Menni & Abdelkader Tatachak, 2018. "A note on estimating the conditional expectation under censoring and association: strong uniform consistency," Statistical Papers, Springer, vol. 59(3), pages 1009-1030, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0268221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.