IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v87y2024i3d10.1007_s00184-023-00911-7.html
   My bibliography  Save this article

Nonparametric estimation of univariate and bivariate survival functions under right censoring: a survey

Author

Listed:
  • Paul Janssen

    (Hasselt University
    North-West University)

  • Noël Veraverbeke

    (Hasselt University
    North-West University)

Abstract

Survival analysis studies time to event data, also called survival data in biomedical research. The main challenge in the analysis of survival data is to develop inferential methods that take into account the incomplete information contained in censored observations. The seminal paper of Kaplan and Meier (J Am Stat Assoc 53:457–481,1958) gave a boost to the development of statistical methods for time to event data subject to right censoring; methods that have been applied in a broad variety of scientific fields including health, engineering and economy. A basic quantity in survival analysis is the survival distribution: $$S(t) = P(T > t)$$ S ( t ) = P ( T > t ) , with T the time to event or, in case of a bivariate vector of lifetimes $$(T_1,T_2)$$ ( T 1 , T 2 ) , $$S(t_1,t_2) = P(T_1> t_1,T_2 > t_2$$ S ( t 1 , t 2 ) = P ( T 1 > t 1 , T 2 > t 2 ). Nonparametric estimation of these basic quantities received, since Kaplan and Meier (J Am Stat Assoc 53:457–481,1958), considerable attention resulting in many publications scattered over a large period of time and a large field of applications. The purpose of this paper is to review, in a unified way, nonparametric estimation of S(t) and $$S(t_1,t_2)$$ S ( t 1 , t 2 ) for time to event data subject to right censoring. Interesting to realize is that, in the multivariate setting, the form of the nonparametric estimator for $$S(t_1,t_2)$$ S ( t 1 , t 2 ) is determined by the actual censoring scheme. In this survey we focus, for the proposed (implicitly) existing or new nonparametric estimators, on the asymptotic normality. By doing so we fill some gaps in the literature by introducing some new estimators and by providing explicit expressions for the asymptotic variances often not yet available for some of the existing estimators.

Suggested Citation

  • Paul Janssen & Noël Veraverbeke, 2024. "Nonparametric estimation of univariate and bivariate survival functions under right censoring: a survey," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(3), pages 211-245, April.
  • Handle: RePEc:spr:metrik:v:87:y:2024:i:3:d:10.1007_s00184-023-00911-7
    DOI: 10.1007/s00184-023-00911-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00911-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00911-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satten G. A. & Datta S., 2001. "The Kaplan-Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average," The American Statistician, American Statistical Association, vol. 55, pages 207-210, August.
    2. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    3. Ingrid Van Keilegom & Noël Veraverbeke, 1997. "Estimation and Bootstrap with Censored Data in Fixed Design Nonparametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(3), pages 467-491, September.
    4. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    5. Candida Geerdens & Paul Janssen & Ingrid Van Keilegom, 2020. "Goodness-of-fit test for a parametric survival function with cure fraction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 768-792, September.
    6. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    7. Lopez, Olivier, 2012. "A generalization of the Kaplan–Meier estimator for analyzing bivariate mortality under right-censoring and left-truncation with applications in model-checking for survival copula models," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 505-516.
    8. Nader Ebrahimi, 2003. "Identifiability and censored data," Biometrika, Biometrika Trust, vol. 90(3), pages 724-727, September.
    9. Ross L. Prentice & Shanshan Zhao, 2018. "Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan–Meier estimator," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 3-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.
    2. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    3. Schwarz, Maik & Jongbloed, Geurt & Van Keilegom, Ingrid, 2012. "On the identifiability of copulas in bivariate competing risks models," LIDAM Discussion Papers ISBA 2012032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Sujica, Aleksandar & Van Keilegom, Ingrid, 2013. "Estimation of location and scale functionals in nonparametric regression under copula dependent censoring," LIDAM Discussion Papers ISBA 2013024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Braekers, Roel & Veraverbeke, Noël, 2008. "A conditional Koziol-Green model under dependent censoring," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 927-937, May.
    6. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    7. Olivier Lopez, 2007. "On the Estimation of the Joint Distribution in Regression Models with Censored Responses," Working Papers 2007-11, Center for Research in Economics and Statistics.
    8. Sujica, Aleksandar & Van Keilegom, Ingrid, 2018. "The copula-graphic estimator in censored nonparametric location-scale regression models," Econometrics and Statistics, Elsevier, vol. 7(C), pages 89-114.
    9. García, A., 2016. "Oaxaca-Blinder Type Counterfactual Decomposition Methods for Duration Outcomes," Documentos de Trabajo 14186, Universidad del Rosario.
    10. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    11. Ebrahimi, Nader & Molefe, Daniel, 2003. "Survival function estimation when lifetime and censoring time are dependent," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 101-132, October.
    12. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    13. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    14. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    15. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    16. Escobar-Bach, Mikael & Van Keilegom, Ingrid, 2023. "Nonparametric estimation of conditional cure models for heavy-tailed distributions and under insufficient follow-up," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    17. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    18. Wenceslao González Manteiga & Cédric Heuchenne & César Sánchez Sellero & Alessandro Beretta, 2020. "Goodness-of-fit tests for censored regression based on artificial data points," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 599-615, June.
    19. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    20. Uña-Álvarez, Jacobo de & González-Manteiga, Wenceslao, 1999. "Strong consistency under proportional censorship when covariables are present," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 283-292, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:87:y:2024:i:3:d:10.1007_s00184-023-00911-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.