IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v24y2018i1d10.1007_s10985-016-9383-y.html
   My bibliography  Save this article

Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan–Meier estimator

Author

Listed:
  • Ross L. Prentice

    (Fred Hutchinson Cancer Research Center)

  • Shanshan Zhao

    (National Institute of Environmental Health Sciences)

Abstract

The Dabrowska (Ann Stat 16:1475–1489, 1988) product integral representation of the multivariate survivor function is extended, leading to a nonparametric survivor function estimator for an arbitrary number of failure time variates that has a simple recursive formula for its calculation. Empirical process methods are used to sketch proofs for this estimator’s strong consistency and weak convergence properties. Summary measures of pairwise and higher-order dependencies are also defined and nonparametrically estimated. Simulation evaluation is given for the special case of three failure time variates.

Suggested Citation

  • Ross L. Prentice & Shanshan Zhao, 2018. "Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan–Meier estimator," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 3-27, January.
  • Handle: RePEc:spr:lifeda:v:24:y:2018:i:1:d:10.1007_s10985-016-9383-y
    DOI: 10.1007/s10985-016-9383-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-016-9383-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-016-9383-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. L. Prentice, 2016. "Higher dimensional Clayton–Oakes models for multivariate failure time data," Biometrika, Biometrika Trust, vol. 103(1), pages 231-236.
    2. J. Fan & R. L. Prentice & L. Hsu, 2000. "A class of weighted dependence measures for bivariate failure time data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 181-190.
    3. Michael G. Akritas & Ingrid Van Keilegom, 2003. "Estimation of bivariate and marginal distributions with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 457-471, May.
    4. R. L. Prentice, 2014. "Self-consistent nonparametric maximum likelihood estimator of the bivariate survivor function," Biometrika, Biometrika Trust, vol. 101(3), pages 505-518.
    5. Yi Li & Ross L. Prentice & Xihong Lin, 2008. "Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data," Biometrika, Biometrika Trust, vol. 95(4), pages 947-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas E. Schaubel & Bin Nan, 2018. "Special issue dedicated to Jack Kalbfleisch," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 1-2, January.
    2. Bernard Rosner & Camden Bay & Robert J. Glynn & Gui-shuang Ying & Maureen G. Maguire & Mei-Ling Ting Lee, 2023. "Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton–Oakes model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 854-887, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    2. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    3. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.
    4. Alan D. Hutson, 2016. "Nonparametric rank based estimation of bivariate densities given censored data conditional on marginal probabilities," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-14, December.
    5. Paduthol Gaduthol Sankaran & Bovas Abraham & Ansa Alphonsa Antony, 2006. "A dependence measure for bivariate failure time data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 327-341.
    6. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    7. Dai, Hongsheng & Bao, Yanchun, 2009. "An inverse probability weighted estimator for the bivariate distribution function under right censoring," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1789-1797, August.
    8. Qian M. Zhou, 2024. "Information matrix equivalence in the presence of censoring: a goodness-of-fit test for semiparametric copula models with multivariate survival data," Statistical Papers, Springer, vol. 65(7), pages 4677-4713, September.
    9. Svetlana Gribkova & Olivier Lopez, 2015. "Non-parametric Copula Estimation Under Bivariate Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 925-946, December.
    10. Gribkova, Svetlana & Lopez, Olivier & Saint-Pierre, Philippe, 2013. "A simplified model for studying bivariate mortality under right-censoring," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 181-192.
    11. Emura, Takeshi & Kao, Fan-Hsuan & Michimae, Hirofumi, 2014. "An improved nonparametric estimator of sub-distribution function for bivariate competing risk models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 229-241.
    12. Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
    13. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    14. Malka Gorfine & Li Hsu, 2011. "Frailty-Based Competing Risks Model for Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 415-426, June.
    15. Bernard Rosner & Camden Bay & Robert J. Glynn & Gui-shuang Ying & Maureen G. Maguire & Mei-Ling Ting Lee, 2023. "Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton–Oakes model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 854-887, October.
    16. Jeongyong Kim & Karen Bandeen-Roche, 2019. "Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 259-279, April.
    17. José Romeo & Nelson Tanaka & Antonio Pedroso-de-Lima & Victor Salinas-Torres, 2013. "Large sample properties for a class of copulas in bivariate survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 997-1015, November.
    18. Lopez, Olivier, 2012. "A generalization of the Kaplan–Meier estimator for analyzing bivariate mortality under right-censoring and left-truncation with applications in model-checking for survival copula models," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 505-516.
    19. Candida Geerdens & Gerda Claeskens & Paul Janssen, 2016. "Copula based flexible modeling of associations between clustered event times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 363-381, July.
    20. Lawless, Jerald F. & Yilmaz, Yildiz E., 2011. "Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2446-2455, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:24:y:2018:i:1:d:10.1007_s10985-016-9383-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.