IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246945.html
   My bibliography  Save this article

A mixture model to detect edges in sparse co-expression graphs with an application for comparing breast cancer subtypes

Author

Listed:
  • Haim Bar
  • Seojin Bang

Abstract

We develop a method to recover a gene network’s structure from co-expression data, measured in terms of normalized Pearson’s correlation coefficients between gene pairs. We treat these co-expression measurements as weights in the complete graph in which nodes correspond to genes. To decide which edges exist in the gene network, we fit a three-component mixture model such that the observed weights of ‘null edges’ follow a normal distribution with mean 0, and the non-null edges follow a mixture of two lognormal distributions, one for positively- and one for negatively-correlated pairs. We show that this so-called L2 N mixture model outperforms other methods in terms of power to detect edges, and it allows to control the false discovery rate. Importantly, our method makes no assumptions about the true network structure. We demonstrate our method, which is implemented in an R package called edgefinder, using a large dataset consisting of expression values of 12,750 genes obtained from 1,616 women. We infer the gene network structure by cancer subtype, and find insightful subtype characteristics. For example, we find thirteen pathways which are enriched in each of the cancer groups but not in the Normal group, with two of the pathways associated with autoimmune diseases and two other with graft rejection. We also find specific characteristics of different breast cancer subtypes. For example, the Luminal A network includes a single, highly connected cluster of genes, which is enriched in the human diseases category, and in the Her2 subtype network we find a distinct, and highly interconnected cluster which is uniquely enriched in drug metabolism pathways.

Suggested Citation

  • Haim Bar & Seojin Bang, 2021. "A mixture model to detect edges in sparse co-expression graphs with an application for comparing breast cancer subtypes," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0246945
    DOI: 10.1371/journal.pone.0246945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246945
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang Bin & Horvath Steve, 2005. "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-45, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    2. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    3. Yan Guo & Hui Yu & Haocan Song & Jiapeng He & Olufunmilola Oyebamiji & Huining Kang & Jie Ping & Scott Ness & Yu Shyr & Fei Ye, 2021. "MetaGSCA: A tool for meta-analysis of gene set differential coexpression," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-15, May.
    4. Mandel, Antoine & Landini, Simone & Gallegati, Mauro & Gintis, Herbert, 2015. "Price dynamics, financial fragility and aggregate volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 257-277.
    5. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
    6. Elva María Novoa-del-Toro & Efrén Mezura-Montes & Matthieu Vignes & Morgane Térézol & Frédérique Magdinier & Laurent Tichit & Anaïs Baudot, 2021. "A multi-objective genetic algorithm to find active modules in multiplex biological networks," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-24, August.
    7. Matias Nehuen Iglesias, 2021. "The Overlooked Insights from Correlation Structures in Economic Geography," Papers in Evolutionary Economic Geography (PEEG) 2105, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2021.
    8. Benjamin A Samuels & E David Leonardo & Alex Dranovsky & Amanda Williams & Erik Wong & Addie May I Nesbitt & Richard D McCurdy & Rene Hen & Mark Alter, 2014. "Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    9. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Sahra Uygun & Cheng Peng & Melissa D Lehti-Shiu & Robert L Last & Shin-Han Shiu, 2016. "Utility and Limitations of Using Gene Expression Data to Identify Functional Associations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    12. Khang Tsung Fei & Yap Von Bing, 2010. "The Apportionment of Total Genetic Variation by Categorical Analysis of Variance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-34, January.
    13. Shaoshuo Li & Baixing Chen & Hao Chen & Zhen Hua & Yang Shao & Heng Yin & Jianwei Wang, 2021. "Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    14. Peter Langfelder & Fuying Gao & Nan Wang & David Howland & Seung Kwak & Thomas F Vogt & Jeffrey S Aaronson & Jim Rosinski & Giovanni Coppola & Steve Horvath & X William Yang, 2018. "MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    15. Wang, Tao & Xiao, Shiying & Yan, Jun & Zhang, Panpan, 2021. "Regional and sectoral structures of the Chinese economy: A network perspective from multi-regional input–output tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    16. Belik, Ivan & Knudsen, Eirik Sjåholm, 2023. "Link on, Link off: Data-driven management of organizational networks for ambidexterity," Journal of Business Research, Elsevier, vol. 157(C).
    17. Akiko Koto & Makoto Tamura & Pui Shan Wong & Sachiyo Aburatani & Eyal Privman & Céline Stoffel & Alessandro Crespi & Sean Keane McKenzie & Christine Mendola & Tomas Kay & Laurent Keller, 2023. "Social isolation shortens lifespan through oxidative stress in ants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Jong Victor L. & Novianti Putri W. & Roes Kit C.B. & Eijkemans Marinus J.C., 2014. "Exploring homogeneity of correlation structures of gene expression datasets within and between etiological disease categories," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(6), pages 717-732, December.
    19. Shijia Zhu & Guohua Wang & Bo Liu & Yadong Wang, 2013. "Modeling Exon Expression Using Histone Modifications," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-15, June.
    20. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.