IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0242081.html
   My bibliography  Save this article

Effect of drill cuttings addition on physicochemical and chemical properties of soil and red clover (Trifolium pretense L.) growth

Author

Listed:
  • Justyna Kujawska
  • Małgorzata Pawłowska

Abstract

The most economical method of drill cuttings disposal may be their application in land reclamation which allows for the wastes recovery. However, the wastes application into the soil should ensure that the quality of the environment would not be deteriorated. These investigations were aimed at identifying the effect of drill cuttings, which were the mixture of different types of drilling wastes, on the physicochemical properties of acidic soil and growth of red clover (Trifolium pratense L.). The experimental design comprised 5 treatments, which differed in a dose of the drill cuttings: 0% (control), 2.5%, 5%, 10% and 15% of dry weight. A six-week pot experiment was conducted to determine the influence of the wastes on the plant growth. The results showed that the drill cuttings addition significantly changed the chemical and physicochemical properties of the soil, such as: electrical conductivity (EC), pH, base saturation, content of carbonate, alkaline cations (Ca2+, Na+, K+, Mg2+), organic matter, total organic carbon (TOC), and available phosphorus form. However, the most important factors that influenced the growth of red clover were pH, base saturation, content of Mg2+ and plant available phosphorus. The red clover biomass was increased from 1.5 to 2.5 times depending on the dose of wastes. We concluded that the examined wastes can be used for reclamation of the acid and unfertile degraded soils, but the amount of wastes should not exceed 5% of the soil, because the highest total clover biomass was observed just at this dose.

Suggested Citation

  • Justyna Kujawska & Małgorzata Pawłowska, 2020. "Effect of drill cuttings addition on physicochemical and chemical properties of soil and red clover (Trifolium pretense L.) growth," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
  • Handle: RePEc:plo:pone00:0242081
    DOI: 10.1371/journal.pone.0242081
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242081
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0242081&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0242081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franks, Daniel M. & Boger, David V. & Côte, Claire M. & Mulligan, David R., 2011. "Sustainable development principles for the disposal of mining and mineral processing wastes," Resources Policy, Elsevier, vol. 36(2), pages 114-122, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devenin, Verónica, 2021. "Collaborative community development in mining regions: The Calama Plus and Creo Antofagasta programs in Chile," Resources Policy, Elsevier, vol. 70(C).
    2. Muibat Omotola Fashola & Veronica Mpode Ngole-Jeme & Olubukola Oluranti Babalola, 2016. "Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance," IJERPH, MDPI, vol. 13(11), pages 1-20, October.
    3. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    4. Ojeda-Pereira, Iván & Campos-Medina, Fernando, 2021. "International trends in mining tailings publications: A descriptive bibliometric study," Resources Policy, Elsevier, vol. 74(C).
    5. World Bank, 2014. "Enhancing Environmental and Social Sustainability of Mining in Armenia," World Bank Publications - Reports 18957, The World Bank Group.
    6. Carlos Cacciuttolo & Edison Atencio, 2022. "Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World," IJERPH, MDPI, vol. 19(20), pages 1-41, October.
    7. Shahba, Sudabe & Arjmandi, Reza & Monavari, Masoud & Ghodusi, Jamal, 2017. "Application of multi-attribute decision-making methods in SWOT analysis of mine waste management (case study: Sirjan's Golgohar iron mine, Iran)," Resources Policy, Elsevier, vol. 51(C), pages 67-76.
    8. Schoenberger, Erica, 2016. "Environmentally sustainable mining: The case of tailings storage facilities," Resources Policy, Elsevier, vol. 49(C), pages 119-128.
    9. Vesna Popović & Jelena Živanović Miljković & Jonel Subić & Andrei Jean-Vasile & Nedelcu Adrian & Eugen Nicolăescu, 2015. "Sustainable Land Management in Mining Areas in Serbia and Romania," Sustainability, MDPI, vol. 7(9), pages 1-21, August.
    10. Armstrong, Margaret & Langrené, Nicolas & Petter, Renato & Chen, Wen & Petter, Carlos, 2019. "Accounting for tailings dam failures in the valuation of mining projects," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    11. Rahimi, Esmaeil & Ghasemzadeh, Hasan, 2015. "A new algorithm to determine optimum cut-off grades considering technical, economical, environmental and social aspects," Resources Policy, Elsevier, vol. 46(P1), pages 51-63.
    12. Huaqin Han & Jinchun Xue & Xiao Zhang & Xiaojuan Wang & Jiaxing Huang & Xun Dai, 2023. "Effect of Carbide Slag Combined with Biochar on Improving Acidic Soil of Copper Sulfide Mines," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    13. Baumber, Alex & Scerri, Moira & Schweinsberg, Stephen, 2019. "A social licence for the sharing economy," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 12-23.
    14. Carlos Cacciuttolo & Alex Marinovic, 2023. "Experiences of Underground Mine Backfilling Using Mine Tailings Developed in the Andean Region of Peru: A Green Mining Solution to Reduce Socio-Environmental Impacts," Sustainability, MDPI, vol. 15(17), pages 1-27, August.
    15. Bui, Nuong Thi & Kawamura, Akira & Kim, Kyoung Woong & Prathumratana, Lunchakorn & Kim, Tae-Heok & Yoon, Suk-Ho & Jang, Min & Amaguchi, Hideo & Bui, Duong Du & Truong, Ngoc Tu, 2017. "Proposal of an indicator-based sustainability assessment framework for the mining sector of APEC economies," Resources Policy, Elsevier, vol. 52(C), pages 405-417.
    16. Rudolf Suppes & Soraya Heuss-Aßbichler, 2021. "How to Identify Potentials and Barriers of Raw Materials Recovery from Tailings? Part II: A Practical UNFC-Compliant Approach to Assess Project Sustainability with On-Site Exploration Data," Resources, MDPI, vol. 10(11), pages 1-48, October.
    17. Marcela Aguiar Nogueira & Lais Cristina Costa & Douglas Mol Resende & Victor Rezende Carvalho & Júlia Castro Mendes & Ricardo André Fiorotti Peixoto, 2024. "Mitigating the socioeconomic impacts of the mining industry through Social Technologies: Guidelines for technology transfer between universities and communities," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(1), pages 54-68, January.
    18. Taha, Y. & Benarchid, Y. & Benzaazoua, M., 2021. "Environmental behavior of waste rocks based concrete: Leaching performance assessment," Resources Policy, Elsevier, vol. 74(C).
    19. Fan, Gangwei & Zhang, Dongsheng & Wang, Xufeng, 2014. "Reduction and utilization of coal mine waste rock in China: A case study in Tiefa coalfield," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 24-33.
    20. Stamp, Anna & Wäger, Patrick A. & Hellweg, Stefanie, 2014. "Linking energy scenarios with metal demand modeling–The case of indium in CIGS solar cells," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 156-167.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0242081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.