IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0238138.html
   My bibliography  Save this article

Rule-based expert system to assess caving output ratio in top coal caving

Author

Listed:
  • HaiYan Jiang
  • Qinghui Song
  • Kuidong Gao
  • QingJun Song
  • XieGuang Zhao

Abstract

Coal mining professionals in coal mining have recognized that the assessment of top coal release rate can not only improve the recovery rate of top coal, but also improve the quality of coal. But the process was often performed using a manual-based operation mode, which intensifies workload and difficulty, and is at risk of human errors. The study designs a assessment system to give the caving output ratio in top coal caving as accurately as possible based on the parameters adaptive Takagi-Sugeno (T-S) fuzzy system and the Levenberg-Marquardt (LM) algorithm. The main goal of the adaptive parameters based on LM algorithm is to construct its damping factor in the light of lowering of the objective function which is as taken as the index of termination iteration. The performance of the system is evaluated by Pearson correlation coefficient, Coefficient of Determination and relative error where the results of the Takagi-Sugeno method and the parameters adaptive Takagi-Sugeno method are compared to make the evaluation more robust and comprehensive.

Suggested Citation

  • HaiYan Jiang & Qinghui Song & Kuidong Gao & QingJun Song & XieGuang Zhao, 2020. "Rule-based expert system to assess caving output ratio in top coal caving," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
  • Handle: RePEc:plo:pone00:0238138
    DOI: 10.1371/journal.pone.0238138
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238138
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0238138&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0238138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    2. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    3. QingJun Song & HaiYan Jiang & Qinghui Song & XieGuang Zhao & Xiaoxuan Wu, 2017. "Combination of minimum enclosing balls classifier with SVM in coal-rock recognition," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    2. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    3. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Ngoc-Tham Tran & Abdul Basit Khan & Thanh-Tung Nguyen & Dae-Wook Kim & Woojin Choi, 2018. "SOC Estimation of Multiple Lithium-Ion Battery Cells in a Module Using a Nonlinear State Observer and Online Parameter Estimation," Energies, MDPI, vol. 11(7), pages 1-14, June.
    5. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    6. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    7. Mariana Durango-Flórez & Daniel González-Montoya & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja, 2022. "PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    8. Shuo Li & Song Li & Haifeng Zhao & Yuan An, 2019. "Design and implementation of state-of-charge estimation based on back-propagation neural network for smart uninterruptible power system," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    9. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    11. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    12. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    13. Xinghao Zhang & Yan Huang & Zhaowei Zhang & Huipin Lin & Yu Zeng & Mingyu Gao, 2022. "A Hybrid Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network Combined with Attention and a Kalman Filter," Energies, MDPI, vol. 15(18), pages 1-26, September.
    14. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    15. Xi, Zhimin & Wang, Rui & Fu, Yuhong & Mi, Chris, 2022. "Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons," Applied Energy, Elsevier, vol. 305(C).
    16. Guo, Jiacheng & Zhang, Peiwen & Wu, Di & Liu, Zhijian & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua, 2022. "Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting," Energy, Elsevier, vol. 239(PC).
    17. Mazin Mohammed Mogadem & Yan Li, 2021. "Memristive Equivalent Circuit Model for Battery," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    18. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    19. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    20. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0238138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.