IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0237326.html
   My bibliography  Save this article

Generalized linear mixed quantile regression with panel data

Author

Listed:
  • Xiaoming Lu
  • Zhaozhi Fan

Abstract

A new generalized linear mixed quantile model for panel data is proposed. This proposed approach applies GEE with smoothed estimating functions, which leads to asymptotically equivalent estimation of the regression coefficients. Random effects are predicted by using the best linear unbiased predictors (BLUP) based on the Tweedie exponential dispersion distributions which cover a wide range of distributions, including those widely used ones, such as the normal distribution, Poisson distribution and gamma distribution. A Taylor expansion of the quantile estimating function is used to linearize the random effects in the quantile process. The parameter estimation is based on the Newton-Raphson iteration method. Our proposed quantile mixed model gives consistent estimates that have asymptotic normal distributions. Simulation studies are carried out to investigate the small sample performance of the proposed approach. As an illustration, the proposed method is applied to analyze the epilepsy data.

Suggested Citation

  • Xiaoming Lu & Zhaozhi Fan, 2020. "Generalized linear mixed quantile regression with panel data," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0237326
    DOI: 10.1371/journal.pone.0237326
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237326
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237326&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0237326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    2. Renjun Ma & Bent Jørgensen, 2007. "Nested generalized linear mixed models: an orthodox best linear unbiased predictor approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 625-641, September.
    3. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    4. Sin-Ho Jung, 2003. "Rank-based regression with repeated measurements data," Biometrika, Biometrika Trust, vol. 90(3), pages 732-740, September.
    5. Geraci, Marco, 2014. "Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i13).
    6. Liu Yuan & Bottai Matteo, 2009. "Mixed-Effects Models for Conditional Quantiles with Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-24, November.
    7. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    8. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    9. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    2. Xiaoming Lu & Zhaozhi Fan, 2015. "Weighted quantile regression for longitudinal data," Computational Statistics, Springer, vol. 30(2), pages 569-592, June.
    3. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    4. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    5. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    6. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    7. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    8. Fu, Liya & Wang, You-Gan & Zhu, Min, 2015. "A Gaussian pseudolikelihood approach for quantile regression with repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 41-53.
    9. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    10. Chen, Xuerong & Tang, Niansheng & Zhou, Yong, 2016. "Quantile regression of longitudinal data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 176-188.
    11. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    12. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    13. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    14. Hyunkeun Ryan Cho, 2018. "Statistical inference in a growth curve quantile regression model for longitudinal data," Biometrics, The International Biometric Society, vol. 74(3), pages 855-862, September.
    15. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    16. Yuzhu Tian & Manlai Tang & Maozai Tian, 2018. "Joint modeling for mixed-effects quantile regression of longitudinal data with detection limits and covariates measured with error, with application to AIDS studies," Computational Statistics, Springer, vol. 33(4), pages 1563-1587, December.
    17. Jang, Woosung & Wang, Huixia Judy, 2015. "A semiparametric Bayesian approach for joint-quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 99-115.
    18. Lv, Jing & Guo, Chaohui & Yang, Hu & Li, Yalian, 2017. "A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 129-144.
    19. Elena Fabrizi & Alessio Farcomeni & Valerio Gatta, 2012. "Modelling work history patterns in the Italian labour market," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 227-247, June.
    20. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0237326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.