IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236546.html
   My bibliography  Save this article

Confronting an individual-based simulation model with empirical community patterns of grasslands

Author

Listed:
  • Franziska Taubert
  • Jessica Hetzer
  • Julia Sabine Schmid
  • Andreas Huth

Abstract

Grasslands contribute to global biogeochemical cycles and can host a high number of plant species. Both–species dynamics and biogeochemical fluxes–are influenced by abiotic and biotic environmental factors, management and natural disturbances. In order to understand and project grassland dynamics under global change, vegetation models which explicitly capture all relevant processes and drivers are required. However, the parameterization of such models is often challenging. Here, we report on testing an individual- and process-based model for simulating the dynamics and structure of a grassland experiment in temperate Europe. We parameterized the model for three species and confront simulated grassland dynamics with empirical observations of their monocultures and one two-species mixture. The model reproduces general trends of vegetation patterns (vegetation cover and height, aboveground biomass and leaf area index) for the monocultures and two-species community. For example, the model simulates well an average annual grassland cover of 70% in the species mixture (observed cover of 77%), but also shows mismatches with specific observation values (e.g. for aboveground biomass). By a sensitivity analysis of the applied inverse model parameterization method, we demonstrate that multiple vegetation attributes are important for a successful parameterization while leaf area index revealed to be of highest relevance. Results of our study pinpoint to the need of improved grassland measurements (esp. of temporally higher resolution) in close combination with advanced modelling approaches.

Suggested Citation

  • Franziska Taubert & Jessica Hetzer & Julia Sabine Schmid & Andreas Huth, 2020. "Confronting an individual-based simulation model with empirical community patterns of grasslands," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0236546
    DOI: 10.1371/journal.pone.0236546
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236546
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236546&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boris Sakschewski & Werner von Bloh & Alice Boit & Lourens Poorter & Marielos Peña-Claros & Jens Heinke & Jasmin Joshi & Kirsten Thonicke, 2016. "Resilience of Amazon forests emerges from plant trait diversity," Nature Climate Change, Nature, vol. 6(11), pages 1032-1036, November.
    2. Soussana, Jean-François & Maire, Vincent & Gross, Nicolas & Bachelet, Bruno & Pagès, Loic & Martin, Raphaël & Hill, David & Wirth, Christian, 2012. "Gemini: A grassland model simulating the role of plant traits for community dynamics and ecosystem functioning. Parameterization and evaluation," Ecological Modelling, Elsevier, vol. 231(C), pages 134-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hetzer, Jessica & Huth, Andreas & Taubert, Franziska, 2021. "The importance of plant trait variability in grasslands: a modelling study," Ecological Modelling, Elsevier, vol. 453(C).
    2. Movedi, Ermes & Bellocchi, Gianni & Argenti, Giovanni & Paleari, Livia & Vesely, Fosco & Staglianò, Nicolina & Dibari, Camilla & Confalonieri, Roberto, 2019. "Development of generic crop models for simulation of multi-species plant communities in mown grasslands," Ecological Modelling, Elsevier, vol. 401(C), pages 111-128.
    3. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    4. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    5. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    6. Stern, Nicholas, 2021. "A time for action on climate change and a time for change in economics," LSE Research Online Documents on Economics 112802, London School of Economics and Political Science, LSE Library.
    7. Stern, Nicholas, 2021. "A time for action on climate change and a time for change in economics," LSE Research Online Documents on Economics 112808, London School of Economics and Political Science, LSE Library.
    8. Maire, Vincent & Soussana, Jean-François & Gross, Nicolas & Bachelet, Bruno & Pagès, Loïc & Martin, Raphaël & Reinhold, Tanja & Wirth, Christian & Hill, David, 2013. "Plasticity of plant form and function sustains productivity and dominance along environment and competition gradients. A modeling experiment with Gemini," Ecological Modelling, Elsevier, vol. 254(C), pages 80-91.
    9. Oomen, Roelof J. & Ewert, Frank & Snyman, Hennie A., 2016. "Modelling rangeland productivity in response to degradation in a semi-arid climate," Ecological Modelling, Elsevier, vol. 322(C), pages 54-70.
    10. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    11. Moulin, Thibault & Perasso, Antoine & Calanca, Pierluigi & Gillet, François, 2021. "DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands," Ecological Modelling, Elsevier, vol. 439(C).
    12. Confalonieri, R., 2014. "CoSMo: A simple approach for reproducing plant community dynamics using a single instance of generic crop simulators," Ecological Modelling, Elsevier, vol. 286(C), pages 1-10.
    13. Pointurier, Olivia & Moreau, Delphine & Pagès, Loïc & Caneill, Jacques & Colbach, Nathalie, 2021. "Individual-based 3D modelling of root systems in heterogeneous plant canopies at the multiannual scale. Case study with a weed dynamics model," Ecological Modelling, Elsevier, vol. 440(C).
    14. Danny Daniel Castillo Vizuete & Alex Vinicio Gavilanes Montoya & Carlos Renato Chávez Velásquez & Stelian Alexandru Borz, 2023. "A Critical Review on the Perspectives of the Forestry Sector in Ecuador," Land, MDPI, vol. 12(1), pages 1-18, January.
    15. Joetzjer, Emilie & Maignan, Fabienne & Chave, Jérôme & Goll, Daniel & Poulter, Ben & Barichivich, Jonathan & Maréchaux, Isabelle & Luyssaert, Sebastiaan & Guimberteau, Matthieu & Naudts, Kim & Bonal, , 2022. "Effect of tree demography and flexible root water uptake for modeling the carbon and water cycles of Amazonia," Ecological Modelling, Elsevier, vol. 469(C).
    16. Vincent Maire & Nicolas Gross & David Hill & Raphaël Martin & Christian Wirth & Ian J Wright & Jean-François Soussana, 2013. "Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    17. Rius, Bianca Fazio & Filho, João Paulo Darela & Fleischer, Katrin & Hofhansl, Florian & Blanco, Carolina Casagrande & Rammig, Anja & Domingues, Tomas Ferreira & Lapola, David Montenegro, 2023. "Higher functional diversity improves modeling of Amazon forest carbon storage," Ecological Modelling, Elsevier, vol. 481(C).
    18. Cochard, Roland & Gravey, Mathieu & Rasera, Luiz Gustavo & Mariethoz, Grégoire & Kull, Christian A., 2023. "The nature of a ‘forest transition’ in Thừa Thiên Huế Province, Central Vietnam – A study of land cover changes over five decades," Land Use Policy, Elsevier, vol. 134(C).
    19. Peterson St-Laurent, Guillaume & Locatelli, Bruno & Hoberg, George & Gukova, Veronika & Hagerman, Shannon, 2021. "Models for integrating climate objectives in forest policy: Towards adaptation-first?," Land Use Policy, Elsevier, vol. 104(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.