IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234094.html
   My bibliography  Save this article

Nonparametric testing of lack of dependence in functional linear models

Author

Listed:
  • Wenjuan Hu
  • Nan Lin
  • Baoxue Zhang

Abstract

An important inferential task in functional linear models is to test the dependence between the response and the functional predictor. The traditional testing theory was constructed based on the functional principle component analysis which requires estimating the covariance operator of the functional predictor. Due to the intrinsic high-dimensionality of functional data, the sample is often not large enough to allow accurate estimation of the covariance operator and hence causes the follow-up test underpowered. To avoid the expensive estimation of the covariance operator, we propose a nonparametric method called Functional Linear models with U-statistics TEsting (FLUTE) to test the dependence assumption. We show that the FLUTE test is more powerful than the current benchmark method (Kokoszka P,2008; Patilea V,2016) in the small or moderate sample case. We further prove the asymptotic normality of our test statistic under both the null hypothesis and a local alternative hypothesis. The merit of our method is demonstrated by both simulation studies and real examples.

Suggested Citation

  • Wenjuan Hu & Nan Lin & Baoxue Zhang, 2020. "Nonparametric testing of lack of dependence in functional linear models," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-24, June.
  • Handle: RePEc:plo:pone00:0234094
    DOI: 10.1371/journal.pone.0234094
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234094
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234094&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    2. F. Yao & E. Lei & Y. Wu, 2015. "Effective dimension reduction for sparse functional data," Biometrika, Biometrika Trust, vol. 102(2), pages 421-437.
    3. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    4. Valentin Patilea & César Sánchez-Sellero & Matthieu Saumard, 2016. "Testing the Predictor Effect on a Functional Response," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1684-1695, October.
    5. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    6. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    7. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    8. Dehan Kong & Ana-Maria Staicu & Arnab Maity, 2016. "Classical testing in functional linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 813-838, October.
    9. Shin, Hyejin & Lee, Myung Hee, 2012. "On prediction rate in partial functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 93-106, January.
    10. Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.
    11. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    2. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    3. Xu, Jianjun & Cui, Wenquan, 2022. "A new RKHS-based global testing for functional linear model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    4. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Merve Yasemin Tekbudak & Marcela Alfaro-Córdoba & Arnab Maity & Ana-Maria Staicu, 2019. "A comparison of testing methods in scalar-on-function regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 411-436, September.
    7. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    8. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    9. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    10. Zhou, Zhiyang, 2021. "Fast implementation of partial least squares for function-on-function regression," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    11. Cody Carroll & Hans‐Georg Müller, 2023. "Latent deformation models for multivariate functional data and time‐warping separability," Biometrics, The International Biometric Society, vol. 79(4), pages 3345-3358, December.
    12. Ali Mahzarnia & Jun Song, 2022. "Multivariate functional group sparse regression: Functional predictor selection," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
    13. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "Testing predictor significance with ultra high dimensional multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 275-286.
    14. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    15. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Wang, Siyang & Cui, Hengjian, 2013. "Generalized F test for high dimensional linear regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 134-149.
    17. Maistre, Samuel & Patilea, Valentin, 2020. "Testing for the significance of functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    18. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    19. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    20. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.