IDEAS home Printed from
   My bibliography  Save this article

On prediction rate in partial functional linear regression


  • Shin, Hyejin
  • Lee, Myung Hee


We consider a prediction of a scalar variable based on both a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, it is inevitable to impose some kind of regularization. We consider two different approaches, which are shown to achieve the same convergence rate of the mean squared prediction error under respective assumptions. One is based on functional principal components regression (FPCR) and the alternative is functional ridge regression (FRR) based on Tikhonov regularization. Also, numerical studies are carried out for a simulation data and a real data.

Suggested Citation

  • Shin, Hyejin & Lee, Myung Hee, 2012. "On prediction rate in partial functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 93-106, January.
  • Handle: RePEc:eee:jmvana:v:103:y:2012:i:1:p:93-106

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cardot, Hervé & Johannes, Jan, 2010. "Thresholding projection estimators in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 395-408, February.
    2. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    3. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    4. Apanasovich, Tatiyana V. & Goldstein, Edward, 2008. "On prediction error in functional linear regression," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1807-1810, September.
    5. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:jmvana:v:161:y:2017:i:c:p:68-82 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:103:y:2012:i:1:p:93-106. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.