Exploitation of local and global information in predictive processing
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0231021
Download full text from publisher
References listed on IDEAS
- Archy O. de Berker & Robb B. Rutledge & Christoph Mathys & Louise Marshall & Gemma F. Cross & Raymond J. Dolan & Sven Bestmann, 2016. "Computations of uncertainty mediate acute stress responses in humans," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
- Milena Rabovsky & Steven S. Hansen & James L. McClelland, 2018. "Modelling the N400 brain potential as change in a probabilistic representation of meaning," Nature Human Behaviour, Nature, vol. 2(9), pages 693-705, September.
- Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Payam Piray & Nathaniel D Daw, 2020. "A simple model for learning in volatile environments," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-26, July.
- Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
- Zhou, Jun & Korkmaz, Aslihan Gizem & Li, Youwei & Yue, Pengpeng & Yan, Yuhan, 2025. "The sword of damocles: Debt and depression," International Review of Financial Analysis, Elsevier, vol. 98(C).
- Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.
- Elizabeth Lomas & Julie McLeod, 2017. "Engaging with change: Information and communication technology professionals’ perspectives on change in the context of the ‘Brexit’ vote," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-26, November.
- Li Xin Lim & Rei Akaishi & Sébastien Hélie, 2025. "Memory Constraints in Uncertainty Misestimation: A Computational Model of Working Memory and Environmental Change Detection," Mathematics, MDPI, vol. 13(15), pages 1-33, July.
- Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
- Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
- Brice Corgnet & Simon Gaechter & Roberto Hernán González, 2020.
"Working too much for too little: stochastic rewards cause work addiction,"
Working Papers
2007, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
- Brice Corgnet & Simon Gaechter & Roberto Hernan Gonzalez, 2020. "Working Too Much for Too Little: Stochastic Rewards Cause Work Addiction," Discussion Papers 2020-03, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
- Corgnet, Brice & Gächter, Simon & González, Roberto Hernán, 2020. "Working Too Much for Too Little: Stochastic Rewards Cause Work Addiction," IZA Discussion Papers 12992, Institute of Labor Economics (IZA).
- Brice Corgnet & Simon Gaechter & Roberto Hernán González, 2020. "Working Too Much for Too Little: Stochastic Rewards Cause Work Addiction," Working Papers 20-04, Chapman University, Economic Science Institute.
- Brice Corgnet & Simon Gaechter & Roberto Hernán González, 2020. "Working too much for too little: stochastic rewards cause work addiction," Working Papers halshs-02483337, HAL.
- Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Thomas P. Reber & Sina Mackay & Marcel Bausch & Marcel S. Kehl & Valeri Borger & Rainer Surges & Florian Mormann, 2023. "Single-neuron mechanisms of neural adaptation in the human temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Jill X O'Reilly & Saad Jbabdi & Matthew F S Rushworth & Timothy E J Behrens, 2013. "Brain Systems for Probabilistic and Dynamic Prediction: Computational Specificity and Integration," PLOS Biology, Public Library of Science, vol. 11(9), pages 1-14, September.
- Toby Wise & Jochen Michely & Peter Dayan & Raymond J Dolan, 2019. "A computational account of threat-related attentional bias," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-21, October.
- Candace M. Raio & Benjamin B. Lu & Michael Grubb & Grant S. Shields & George M. Slavich & Paul Glimcher, 2022. "Cumulative lifetime stressor exposure assessed by the STRAIN predicts economic ambiguity aversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Sang Wan Lee & John P O’Doherty & Shinsuke Shimojo, 2015. "Neural Computations Mediating One-Shot Learning in the Human Brain," PLOS Biology, Public Library of Science, vol. 13(4), pages 1-36, April.
- Payam Piray & Nathaniel D. Daw, 2024. "Computational processes of simultaneous learning of stochasticity and volatility in humans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Nazanin Mohammadi Sepahvand & Elisabeth Stöttinger & James Danckert & Britt Anderson, 2014. "Sequential Decisions: A Computational Comparison of Observational and Reinforcement Accounts," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
- Fletcher, Cameron S. & Ganegodage, K. Renuka & Hildenbrand, Marian D. & Rambaldi, Alicia N., 2022. "The behaviour of property prices when affected by infrequent floods," Land Use Policy, Elsevier, vol. 122(C).
- Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
- Peyman Khorsand & Alireza Soltani, 2017. "Optimal structure of metaplasticity for adaptive learning," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-22, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231021. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/plo/pone00/0231021.html