IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006972.html
   My bibliography  Save this article

Confidence resets reveal hierarchical adaptive learning in humans

Author

Listed:
  • Micha Heilbron
  • Florent Meyniel

Abstract

Hierarchical processing is pervasive in the brain, but its computational significance for learning under uncertainty is disputed. On the one hand, hierarchical models provide an optimal framework and are becoming increasingly popular to study cognition. On the other hand, non-hierarchical (flat) models remain influential and can learn efficiently, even in uncertain and changing environments. Here, we show that previously proposed hallmarks of hierarchical learning, which relied on reports of learned quantities or choices in simple experiments, are insufficient to categorically distinguish hierarchical from flat models. Instead, we present a novel test which leverages a more complex task, whose hierarchical structure allows generalization between different statistics tracked in parallel. We use reports of confidence to quantitatively and qualitatively arbitrate between the two accounts of learning. Our results support the hierarchical learning framework, and demonstrate how confidence can be a useful metric in learning theory.Author summary: Learning and predicting in every-day life is made difficult by the fact that our world is both uncertain (e.g. will it rain tonight?) and changing (e.g. climate change shakes up weather). When a change occurs, what has been learned must be revised: learning should therefore be flexible. One possibility that ensures flexibility is to constantly forget about the remote past and to rely on recent observations. This solution is computationally cheap but effective, and is at the core of many popular learning algorithms. Another possibility is to monitor the occurrence of changes themselves, and revise what has been learned accordingly. This solution requires a hierarchical representation, in which some factors like changes modify other aspects of learning. This solution is computational more complicated but it allows more sophisticated inferences. Here, we provide a direct way to test experimentally whether or not learners use a hierarchical learning strategy. Our results show that humans revise their beliefs and the confidence they hold in their beliefs in a way that is only compatible with hierarchical inference. Our results contribute to the characterization of the putative algorithms our brain may use to learn, and the neural network models that may implement these algorithms.

Suggested Citation

  • Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
  • Handle: RePEc:plo:pcbi00:1006972
    DOI: 10.1371/journal.pcbi.1006972
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006972
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006972&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joaquin Navajas & Chandni Hindocha & Hebah Foda & Mehdi Keramati & Peter E. Latham & Bahador Bahrami, 2017. "The idiosyncratic nature of confidence," Nature Human Behaviour, Nature, vol. 1(11), pages 810-818, November.
    2. Karl Friston, 2008. "Hierarchical Models in the Brain," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-24, November.
    3. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    4. Adam Kepecs & Naoshige Uchida & Hatim A. Zariwala & Zachary F. Mainen, 2008. "Neural correlates, computation and behavioural impact of decision confidence," Nature, Nature, vol. 455(7210), pages 227-231, September.
    5. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    6. Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    7. Peyman Khorsand & Alireza Soltani, 2017. "Optimal structure of metaplasticity for adaptive learning," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    2. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    3. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    4. He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    2. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    3. Manuel Rausch & Michael Zehetleitner, 2019. "The folded X-pattern is not necessarily a statistical signature of decision confidence," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-18, October.
    4. Payam Piray & Nathaniel D Daw, 2020. "A simple model for learning in volatile environments," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-26, July.
    5. Mateus Joffily & Giorgio Coricelli, 2013. "Emotional Valence and the Free-Energy Principle," Post-Print halshs-00834063, HAL.
    6. Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.
    7. Uri Hertz & Bahador Bahrami & Mehdi Keramati, 2018. "Stochastic satisficing account of confidence in uncertain value-based decisions," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    8. Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    9. William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.
    10. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    11. John C. Boik, 2020. "Science-Driven Societal Transformation, Part I: Worldview," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    12. Marine Hainguerlot & Thibault Gajdos & Jean-Christophe Vergnaud & Vincent de Gardelle, 2023. "How Overconfidence Bias Influences Suboptimality in Perceptual Decision Making," PSE-Ecole d'économie de Paris (Postprint) hal-04197403, HAL.
    13. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    14. Lejarraga, Tomás & Lejarraga, José, 2020. "Confidence and the description–experience distinction," Organizational Behavior and Human Decision Processes, Elsevier, vol. 161(C), pages 201-212.
    15. Laurence Aitchison & Dan Bang & Bahador Bahrami & Peter E Latham, 2015. "Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-23, October.
    16. Ronald H Stevens & Trysha L Galloway, 2022. "Can machine learning be used to forecast the future uncertainty of military teams?," The Journal of Defense Modeling and Simulation, , vol. 19(2), pages 145-158, April.
    17. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    18. Andrea Insabato & Mario Pannunzi & Gustavo Deco, 2017. "Multiple Choice Neurodynamical Model of the Uncertain Option Task," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-29, January.
    19. Daniel S Kluger & Nico Broers & Marlen A Roehe & Moritz F Wurm & Niko A Busch & Ricarda I Schubotz, 2020. "Exploitation of local and global information in predictive processing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    20. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.