IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0215385.html
   My bibliography  Save this article

Improving ambulance coverage in a mixed urban-rural region in Norway using mathematical modeling

Author

Listed:
  • Pieter L van den Berg
  • Peter Fiskerstrand
  • Karen Aardal
  • Jørgen Einerkjær
  • Trond Thoresen
  • Jo Røislien

Abstract

Background: Ambulance services play a crucial role in providing pre-hospital emergency care. In order to ensure quick responses, the location of the bases, and the distribution of available ambulances among these bases, should be optimized. In mixed urban-rural areas, this optimization typically involves a trade-off between backup coverage in high-demand urban areas and single coverage in rural low-demand areas. The aim of this study was to find the optimal distribution of bases and ambulances in the Vestfold region of Norway in order to optimize ambulance coverage. Method: The optimal location of bases and distribution of ambulances was estimated using the Maximum Expected Covering Location Model. A wide range of parameter settings were fitted, with the number of ambulances ranging from 1 to 15, and an average ambulance utilization of 0, 15, 35 and 50%, corresponding to the empirical numbers for night, afternoon and day, respectively. We performed the analysis both conditioned on the current base structure, and in a fully greenfield scenario. Results: Four of the five current bases are located close to the mathematical optimum, with the exception of the northernmost base, in the rural part of the region. Moving this base, along with minor changes to the location of the four other bases, coverage can be increased from 93.46% to 97.51%. While the location of the bases is insensitive to the workload of the system, the distribution of the ambulances is not. The northernmost base should only be used if enough ambulances are available, and this required minimum number increases significantly with increasing system workload. Conclusion: As the load of the system increases, focus of the model shifts from providing single coverage in low-demand areas to backup coverage in high-demand areas. The classification rule for urban and rural areas significantly affects results and must be evaluated accordingly.

Suggested Citation

  • Pieter L van den Berg & Peter Fiskerstrand & Karen Aardal & Jørgen Einerkjær & Trond Thoresen & Jo Røislien, 2019. "Improving ambulance coverage in a mixed urban-rural region in Norway using mathematical modeling," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0215385
    DOI: 10.1371/journal.pone.0215385
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215385
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215385&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0215385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. Laura McLay, 2009. "A maximum expected covering location model with two types of servers," IISE Transactions, Taylor & Francis Journals, vol. 41(8), pages 730-741.
    3. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    4. Elizabeth Ty Wilde, 2013. "Do Emergency Medical System Response Times Matter For Health Outcomes?," Health Economics, John Wiley & Sons, Ltd., vol. 22(7), pages 790-806, July.
    5. van den Berg, Pieter L. & Aardal, Karen, 2015. "Time-dependent MEXCLP with start-up and relocation cost," European Journal of Operational Research, Elsevier, vol. 242(2), pages 383-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L’udmila Jánošíková & Peter Jankovič & Marek Kvet & Gaston Ivanov & Jakub Holod & Imrich Berta, 2022. "Reorganization of an Emergency Medical System in a Mixed Urban-Rural Area," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    2. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    3. EunSu Lee & Melanie McDonald & Erin O’Neill & William Montgomery, 2021. "Statewide Ambulance Coverage of a Mixed Region of Urban, Rural and Frontier under Travel Time Catchment Areas," IJERPH, MDPI, vol. 18(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    3. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    4. van Barneveld, Thije & Jagtenberg, Caroline & Bhulai, Sandjai & van der Mei, Rob, 2018. "Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 129-142.
    5. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    6. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    7. Enayati, Shakiba & Mayorga, Maria E. & Rajagopalan, Hari K. & Saydam, Cem, 2018. "Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers," Omega, Elsevier, vol. 79(C), pages 67-80.
    8. Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    9. Thije van Barneveld, 2016. "The Minimum Expected Penalty Relocation Problem for the Computation of Compliance Tables for Ambulance Vehicles," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 370-384, May.
    10. Shayesta Wajid & N. Nezamuddin, 2023. "Optimizing emergency services for road safety using a decomposition method: a case study of Delhi," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 155-173, March.
    11. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    12. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    13. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    14. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    15. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    16. Suriyaphong Nilsang & Chumpol Yuangyai & Chen-Yang Cheng & Udom Janjarassuk, 2019. "Locating an ambulance base by using social media: a case study in Bangkok," Annals of Operations Research, Springer, vol. 283(1), pages 497-516, December.
    17. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    19. van den Berg, Pieter L. & Aardal, Karen, 2015. "Time-dependent MEXCLP with start-up and relocation cost," European Journal of Operational Research, Elsevier, vol. 242(2), pages 383-389.
    20. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0215385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.