IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204114.html
   My bibliography  Save this article

A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities

Author

Listed:
  • Thiago Bernardi Vieira
  • Carla Simone Pavanelli
  • Lilian Casatti
  • Welber Senteio Smith
  • Evanilde Benedito
  • Rosana Mazzoni
  • Jorge Iván Sánchez-Botero
  • Danielle Sequeira Garcez
  • Sergio Maia Queiroz Lima
  • Paulo Santos Pompeu
  • Carlos Sérgio Agostinho
  • Luciano Fogaça de Assis Montag
  • Jansen Zuanon
  • Pedro De Podestà Uchôa de Aquino
  • Mauricio Cetra
  • Francisco Leonardo Tejerina-Garro
  • Luiz Fernando Duboc
  • Ruanny Casarim Corrêa
  • María Angélica Pérez-Mayorga
  • Gabriel Lourenço Brejão
  • Nadayca Thayane Bonani Mateussi
  • Míriam Aparecida de Castro
  • Rafael Pereira Leitão
  • Fernando Pereira de Mendonça
  • Leandra Rose Palheta da Silva
  • Renata Frederico
  • Paulo De Marco

Abstract

Several hypotheses are used to explain species richness patterns. Some of them (e.g. species-area, species-energy, environment-energy, water-energy, terrestrial primary productivity, environmental spatial heterogeneity, and climatic heterogeneity) are known to explain species richness patterns of terrestrial organisms, especially when they are combined. For aquatic organisms, however, it is unclear if these hypotheses can be useful to explain for these purposes. Therefore, we used a selection model approach to assess the predictive capacity of such hypotheses, and to determine which of them (combined or not) would be the most appropriate to explain the fish species distribution in small Brazilian streams. We perform the Akaike’s information criteria for models selections and the eigenvector analysis to control the special autocorrelation. The spatial structure was equal to 0.453, Moran’s I, and require 11 spatial filters. All models were significant and had adjustments ranging from 0.370 to 0.416 with strong spatial component (ranging from 0.226 to 0.369) and low adjustments for environmental data (ranging from 0.001 to 0.119) We obtained two groups of hypothesis are able to explain the richness pattern (1) water-energy, temporal productivity-heterogeneity (AIC = 4498.800) and (2) water-energy, temporal productivity-heterogeneity and area (AIC = 4500.400). We conclude that the fish richness patterns in small Brazilian streams are better explained by a combination of Water-Energy + Productivity + Temporal Heterogeneity hypotheses and not by just one.

Suggested Citation

  • Thiago Bernardi Vieira & Carla Simone Pavanelli & Lilian Casatti & Welber Senteio Smith & Evanilde Benedito & Rosana Mazzoni & Jorge Iván Sánchez-Botero & Danielle Sequeira Garcez & Sergio Maia Queiro, 2018. "A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0204114
    DOI: 10.1371/journal.pone.0204114
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204114
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204114&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin J. Gaston, 2000. "Global patterns in biodiversity," Nature, Nature, vol. 405(6783), pages 220-227, May.
    2. Jeremy T. Kerr & Laurence Packer, 1997. "Habitat heterogeneity as a determinant of mammal species richness in high-energy regions," Nature, Nature, vol. 385(6613), pages 252-254, January.
    3. Jean-François Guégan & Sovan Lek & Thierry Oberdorff, 1998. "Energy availability and habitat heterogeneity predict global riverine fish diversity," Nature, Nature, vol. 391(6665), pages 382-384, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    3. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    4. Zhenhua Luo & Songhua Tang & Chunwang Li & Jing Chen & Hongxia Fang & Zhigang Jiang, 2011. "Do Rapoport's Rule, Mid-Domain Effect or Environmental Factors Predict Latitudinal Range Size Patterns of Terrestrial Mammals in China?," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    5. Simona-Roxana Ulman & Costica Mihai & Cristina Cautisanu, 2020. "Peculiarities of the Relation between Human and Environmental Wellbeing in Different Stages of National Development," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    6. Henry, Mickaël & Cosson, Jean François & Pons, Jean Marc, 2010. "Modelling multi-scale spatial variation in species richness from abundance data in a complex neotropical bat assemblage," Ecological Modelling, Elsevier, vol. 221(17), pages 2018-2027.
    7. Mellin, C. & Ferraris, J. & Galzin, R. & Harmelin-Vivien, M. & Kulbicki, M. & de Loma, T. Lison, 2008. "Natural and anthropogenic influences on the diversity structure of reef fish communities in the Tuamotu Archipelago (French Polynesia)," Ecological Modelling, Elsevier, vol. 218(1), pages 182-187.
    8. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    9. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    10. Zhenjie Dong & Lin Hou & Qi Ruan, 2023. "Effect of Elevation Gradient on Carbon Pools in a Juniperus przewalskii Kom. Forest in Qinghai, China," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    11. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    12. Junyan Wu & Yajing He & Yongjing Zhao & Kai Chen & Yongde Cui & Hongzhu Wang, 2022. "A Simple Index of Lake Ecosystem Health Based on Species-Area Models of Macrobenthos," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    13. Irene Petrosillo & Donatella Valente & Christian Mulder & Bai-Lian Li & K. Bruce Jones & Giovanni Zurlini, 2021. "The Resilient Recurrent Behavior of Mediterranean Semi-Arid Complex Adaptive Landscapes," Land, MDPI, vol. 10(3), pages 1-18, March.
    14. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    15. Simona-Roxana Ulman & Costica Mihai & Cristina Cautisanu & Ioan-Sebastian Brumă & Oana Coca & Gavril Stefan, 2021. "Environmental Performance in EU Countries from the Perspective of Its Relation to Human and Economic Wellbeing," IJERPH, MDPI, vol. 18(23), pages 1-26, December.
    16. Katherine Velghe & Irene Gregory-Eaves, 2013. "Body Size Is a Significant Predictor of Congruency in Species Richness Patterns: A Meta-Analysis of Aquatic Studies," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-6, February.
    17. Carlos Martínez-Núñez & Ricardo Martínez-Prentice & Vicente García-Navas, 2023. "Land-use diversity predicts regional bird taxonomic and functional richness worldwide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Tomasz Bartuś & Wojciech Mastej, 2023. "Morphodiversity as a Tool in Geoconservation: A Case Study in a Mountain Area (Pieniny Mts, Poland)," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    19. Danijela Markovic & Jörg Freyhof & Christian Wolter, 2012. "Where Are All the Fish: Potential of Biogeographical Maps to Project Current and Future Distribution Patterns of Freshwater Species," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-15, July.
    20. Odoligie Imarhiagbe & Wisdom Oghenevwogaga Egboduku, 2019. "Conservation and Utilization of Biodiversity- Implications to the Nigerian Environment," JOJ Wildlife & Biodiversity, Juniper Publishers Inc., vol. 1(4), pages 93-102, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.