IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v218y2008i1p182-187.html
   My bibliography  Save this article

Natural and anthropogenic influences on the diversity structure of reef fish communities in the Tuamotu Archipelago (French Polynesia)

Author

Listed:
  • Mellin, C.
  • Ferraris, J.
  • Galzin, R.
  • Harmelin-Vivien, M.
  • Kulbicki, M.
  • de Loma, T. Lison

Abstract

Despite the rapid rate of human-induced species losses, the relative influence of natural and anthropogenic factors on the functional diversity of species assemblages remains unknown for most ecosystems. A model was previously developed to predict the diversity structure of coral reef fish assemblages in 10 atolls of low human pressure and contrasting morphology of the Tuamotu Archipelago (French Polynesia). This existing model predicted smoothed histograms (spectra) of species richness according to size classes, diet classes and life-history classes of fish assemblages using a combination of environmental characteristics at different spatial scales. The present study applied the model to Tikehau, another atoll of the same archipelago where commercial fishing is practiced and where the same sampling strategy was reproduced. Significant differences appeared between predicted and observed species richness in several size, diet and life-history classes of fish assemblages in Tikehau. Two parameters which were not accounted for in the initial model, i.e. fishing pressure and atoll position within the archipelago, explained together 63% of variance in model residuals, >60% being explained by fishing pressure only. The respective effects of fishing and atoll position on the diversity of coral reef fish assemblages are discussed, with the potential of such modelling approach to assess the relative importance of factors affecting functional diversity within communities.

Suggested Citation

  • Mellin, C. & Ferraris, J. & Galzin, R. & Harmelin-Vivien, M. & Kulbicki, M. & de Loma, T. Lison, 2008. "Natural and anthropogenic influences on the diversity structure of reef fish communities in the Tuamotu Archipelago (French Polynesia)," Ecological Modelling, Elsevier, vol. 218(1), pages 182-187.
  • Handle: RePEc:eee:ecomod:v:218:y:2008:i:1:p:182-187
    DOI: 10.1016/j.ecolmodel.2008.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008003700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin J. Gaston, 2000. "Global patterns in biodiversity," Nature, Nature, vol. 405(6783), pages 220-227, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon J Pittman & Kerry A Brown, 2011. "Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    2. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    3. Zhenhua Luo & Songhua Tang & Chunwang Li & Jing Chen & Hongxia Fang & Zhigang Jiang, 2011. "Do Rapoport's Rule, Mid-Domain Effect or Environmental Factors Predict Latitudinal Range Size Patterns of Terrestrial Mammals in China?," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    4. Simona-Roxana Ulman & Costica Mihai & Cristina Cautisanu, 2020. "Peculiarities of the Relation between Human and Environmental Wellbeing in Different Stages of National Development," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    5. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    6. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    7. Zhenjie Dong & Lin Hou & Qi Ruan, 2023. "Effect of Elevation Gradient on Carbon Pools in a Juniperus przewalskii Kom. Forest in Qinghai, China," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    8. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    9. Junyan Wu & Yajing He & Yongjing Zhao & Kai Chen & Yongde Cui & Hongzhu Wang, 2022. "A Simple Index of Lake Ecosystem Health Based on Species-Area Models of Macrobenthos," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    10. Irene Petrosillo & Donatella Valente & Christian Mulder & Bai-Lian Li & K. Bruce Jones & Giovanni Zurlini, 2021. "The Resilient Recurrent Behavior of Mediterranean Semi-Arid Complex Adaptive Landscapes," Land, MDPI, vol. 10(3), pages 1-18, March.
    11. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    12. Simona-Roxana Ulman & Costica Mihai & Cristina Cautisanu & Ioan-Sebastian Brumă & Oana Coca & Gavril Stefan, 2021. "Environmental Performance in EU Countries from the Perspective of Its Relation to Human and Economic Wellbeing," IJERPH, MDPI, vol. 18(23), pages 1-26, December.
    13. Katherine Velghe & Irene Gregory-Eaves, 2013. "Body Size Is a Significant Predictor of Congruency in Species Richness Patterns: A Meta-Analysis of Aquatic Studies," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-6, February.
    14. Carlos Martínez-Núñez & Ricardo Martínez-Prentice & Vicente García-Navas, 2023. "Land-use diversity predicts regional bird taxonomic and functional richness worldwide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Tomasz Bartuś & Wojciech Mastej, 2023. "Morphodiversity as a Tool in Geoconservation: A Case Study in a Mountain Area (Pieniny Mts, Poland)," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    16. Odoligie Imarhiagbe & Wisdom Oghenevwogaga Egboduku, 2019. "Conservation and Utilization of Biodiversity- Implications to the Nigerian Environment," JOJ Wildlife & Biodiversity, Juniper Publishers Inc., vol. 1(4), pages 93-102, October.
    17. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    18. O'Neill, Daniel W. & Abson, David J., 2009. "To settle or protect? A global analysis of net primary production in parks and urban areas," Ecological Economics, Elsevier, vol. 69(2), pages 319-327, December.
    19. Yuantan Zhong & Aleksandr Ivanovskii & Jean Claude Ndayishimiye & Andrey N. Tsyganov & Kirill Babeshko & Damir Saldaev & Yuri Mazei, 2022. "Distribution of Soil Microbes in Urban Parks: An Effect of Under-Tree Crown and Hillside Position on Testate Amoeba Assemblages in Subtropics (Shenzhen, China)," Land, MDPI, vol. 11(12), pages 1-17, December.
    20. Jinhui Wu & Haoxin Li & Huawei Wan & Yongcai Wang & Chenxi Sun & Hongmin Zhou, 2021. "Analyzing the Relationship between Animal Diversity and the Remote Sensing Vegetation Parameters: The Case of Xinjiang, China," Sustainability, MDPI, vol. 13(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:218:y:2008:i:1:p:182-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.