IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2009i2p319-327.html
   My bibliography  Save this article

To settle or protect? A global analysis of net primary production in parks and urban areas

Author

Listed:
  • O'Neill, Daniel W.
  • Abson, David J.

Abstract

We test--at the global scale--the hypothesis that human beings tend to build settlements in areas of high biological productivity, and protect (as parks) areas of low productivity. Furthermore, we propose an alternative measure of the extent and effectiveness of the global protected areas network based on potential net primary production (NPP0). The average NPP0 in urban areas and parks is calculated and compared to the average NPP0 of the geopolitical regions and biomes containing these areas. Additionally, human appropriation of net primary production (HANPP) in parks is used as an indicator of the effectiveness of these protected areas. We find that in almost all regions of the world, humans have chosen to settle in the most productive areas. At the global scale, urban areas have considerably higher NPP0 (592Â g Cm-Â 2 yr-Â 1) than the global average (494Â g Cm-Â 2 yr-Â 1), while parks have roughly average NPP0 (490Â g Cm-Â 2 yr-Â 1). Parks with an IUCN category of I-VI account for 9.5% of the planet's terrestrial NPP0, compared to 9.6% of its terrestrial area. Although protected area and protected NPP0 are nearly equal, this equivalence is diminished by HANPP within parks. Globally, the average HANPP in all protected areas is 14% of their NPP0, and HANPP within parks increases as the park management category becomes less restrictive. Moreover, we find a positive correlation between HANPP in parks and the extent of urbanization in the surrounding region and biome. Area-based targets for conservation provide no information on either the quality of the areas we choose to protect, or the effectiveness of that protection. We conclude that NPP0 and HANPP may provide an additional, useful tool for assessing the extent and effectiveness of the global protected areas network.

Suggested Citation

  • O'Neill, Daniel W. & Abson, David J., 2009. "To settle or protect? A global analysis of net primary production in parks and urban areas," Ecological Economics, Elsevier, vol. 69(2), pages 319-327, December.
  • Handle: RePEc:eee:ecolec:v:69:y:2009:i:2:p:319-327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(09)00358-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana S. L. Rodrigues & Sandy J. Andelman & Mohamed I. Bakarr & Luigi Boitani & Thomas M. Brooks & Richard M. Cowling & Lincoln D. C. Fishpool & Gustavo A. B. da Fonseca & Kevin J. Gaston & Michael Hoff, 2004. "Effectiveness of the global protected area network in representing species diversity," Nature, Nature, vol. 428(6983), pages 640-643, April.
    2. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    3. Kevin J. Gaston, 2000. "Global patterns in biodiversity," Nature, Nature, vol. 405(6783), pages 220-227, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    2. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    3. Zhifeng Zhang & Yuping Tang & Hongyi Pan & Caiyi Yao & Tianyi Zhang, 2022. "Assessment of the Ecological Protection Effectiveness of Protected Areas Using Propensity Score Matching: A Case Study in Sichuan, China," IJERPH, MDPI, vol. 19(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    2. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    3. A.S. Duden & P.A. Verweij & A.P.C. Faaij & D. Baisero & C. Rondinini & F. van der Hilst, 2020. "Biodiversity Impacts of Increased Ethanol Production in Brazil," Land, MDPI, vol. 9(1), pages 1-17, January.
    4. Erin McCreless & Piero Visconti & Josie Carwardine & Chris Wilcox & Robert J Smith, 2013. "Cheap and Nasty? The Potential Perils of Using Management Costs to Identify Global Conservation Priorities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    5. Lissa M Barr & Robert L Pressey & Richard A Fuller & Daniel B Segan & Eve McDonald-Madden & Hugh P Possingham, 2011. "A New Way to Measure the World's Protected Area Coverage," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-4, September.
    6. Conceição, Eliezer O. & Garcia, Jéssica Magon & Alves, Gustavo Henrique Zaia & Delanira-Santos, Driele & Corbetta, Daiany de Fátima & Betiol, Tânia Camila Crivelari & Pacifico, Ricardo & Romagnolo, Ma, 2022. "The impact of downsizing protected areas: How a misguided policy may enhance landscape fragmentation and biodiversity loss," Land Use Policy, Elsevier, vol. 112(C).
    7. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    8. Matthew L. Clark & Jorge Ruiz & Maria C. Fandino & David López-Carr, 2021. "Conservation Priorities in Terrestrial Protected Areas for Latin America and the Caribbean Based on an Ecoregional Analysis of Woody Vegetation Change, 2001–2010," Land, MDPI, vol. 10(10), pages 1-21, October.
    9. Jinhui Wu & Haoxin Li & Huawei Wan & Yongcai Wang & Chenxi Sun & Hongmin Zhou, 2021. "Analyzing the Relationship between Animal Diversity and the Remote Sensing Vegetation Parameters: The Case of Xinjiang, China," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    10. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    11. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    12. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    13. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    14. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    15. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    16. Yuchen Du & Junfeng Chen & Yi Xie, 2023. "The Impacts of the Asian Elephants Damage on Farmer’s Livelihood Strategies in Pu’er and Xishuangbanna in China," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    17. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    18. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    19. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    20. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2009:i:2:p:319-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.