IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177847.html
   My bibliography  Save this article

Diagnostic potential of multimodal neuroimaging in posttraumatic stress disorder

Author

Listed:
  • Jooyeon Jamie Im
  • Binna Kim
  • Jaeuk Hwang
  • Jieun E Kim
  • Jung Yoon Kim
  • Sandy Jeong Rhie
  • Eun Namgung
  • Ilhyang Kang
  • Sohyeon Moon
  • In Kyoon Lyoo
  • Chang-hyun Park
  • Sujung Yoon

Abstract

Despite accumulating evidence of physiological abnormalities related to posttraumatic stress disorder (PTSD), the current diagnostic criteria for PTSD still rely on clinical interviews. In this study, we investigated the diagnostic potential of multimodal neuroimaging for identifying posttraumatic symptom trajectory after trauma exposure. Thirty trauma-exposed individuals and 29 trauma-unexposed healthy individuals were followed up over a 5-year period. Three waves of assessments using multimodal neuroimaging, including structural magnetic resonance imaging (MRI) and diffusion-weighted MRI, were performed. Based on previous findings that the structural features of the fear circuitry-related brain regions may dynamically change during recovery from the trauma, we employed a machine learning approach to determine whether local, connectivity, and network features of brain regions of the fear circuitry including the amygdala, orbitofrontal and ventromedial prefrontal cortex (OMPFC), hippocampus, insula, and thalamus could distinguish trauma-exposed individuals from trauma-unexposed individuals at each recovery stage. Significant improvement in PTSD symptoms was observed in 23%, 52%, and 88% of trauma-exposed individuals at 1.43, 2.68, and 3.91 years after the trauma, respectively. The structural features of the amygdala were found as major classifiers for discriminating trauma-exposed individuals from trauma-unexposed individuals at 1.43 years after the trauma, but these features were nearly normalized at later phases when most of the trauma-exposed individuals showed clinical improvement in PTSD symptoms. Additionally, the structural features of the OMPFC showed consistent predictive values throughout the recovery period. In conclusion, the current study provides a promising step forward in the development of a clinically applicable predictive model for diagnosing PTSD and predicting recovery from PTSD.

Suggested Citation

  • Jooyeon Jamie Im & Binna Kim & Jaeuk Hwang & Jieun E Kim & Jung Yoon Kim & Sandy Jeong Rhie & Eun Namgung & Ilhyang Kang & Sohyeon Moon & In Kyoon Lyoo & Chang-hyun Park & Sujung Yoon, 2017. "Diagnostic potential of multimodal neuroimaging in posttraumatic stress disorder," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0177847
    DOI: 10.1371/journal.pone.0177847
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177847
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177847&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher May, 2017. ": 40 years on," Third World Quarterly, Taylor & Francis Journals, vol. 38(10), pages 2223-2241, October.
    2. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    3. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    4. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    5. Matthew Herland & Richard A. Bauder & Taghi M. Khoshgoftaar, 2020. "Approaches for identifying U.S. medicare fraud in provider claims data," Health Care Management Science, Springer, vol. 23(1), pages 2-19, March.
    6. Paolo Cimbali & Marco De Leonardis & Alessio Fiume & Barbara La Ganga & Luciana Meoli & Marco Orlandi, 2023. "A decision-making rule to detect insufficient data quality - an application of statistical learning techniques to the non-performing loans banking data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Post-pandemic landscape for central bank statistics, volume 58, Bank for International Settlements.
    7. Wenfa Li & Hongzhe Liu & Peng Yang & Wei Xie, 2016. "Supporting Regularized Logistic Regression Privately and Efficiently," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    8. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    9. Kadri Ulas Akay, 2014. "A graphical evaluation of logistic ridge estimator in mixture experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1217-1232, June.
    10. Marco-Antonio Moreno-Ibarra & Yenny Villuendas-Rey & Miltiadis D. Lytras & Cornelio Yáñez-Márquez & Julio-César Salgado-Ramírez, 2021. "Classification of Diseases Using Machine Learning Algorithms: A Comparative Study," Mathematics, MDPI, vol. 9(15), pages 1-21, July.
    11. Pecorari,Natalia Gisel & Cuesta Leiva,Jose Antonio, 2023. "Citizen Participation and Political Trust in Latin America and the Caribbean : AMachine Learning Approach," Policy Research Working Paper Series 10335, The World Bank.
    12. Lambert-Lacroix, Sophie & Peyre, Julie, 2006. "Local likelihood regression in generalized linear single-index models with applications to microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2091-2113, December.
    13. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    14. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    15. Mustafa Şeref AKIN, 2020. "High Cost of Venture Capital and Investment Strategy Startups Should Follow," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 70(1), pages 229-245, June.
    16. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.
    17. Ying Guan & Guang-Hui Fu, 2022. "A Double-Penalized Estimator to Combat Separation and Multicollinearity in Logistic Regression," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    18. M Berkan Sesen & Ann E Nicholson & Rene Banares-Alcantara & Timor Kadir & Michael Brady, 2013. "Bayesian Networks for Clinical Decision Support in Lung Cancer Care," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    19. Ayanendranath Basu & Abhik Ghosh & Maria Jaenada & Leandro Pardo, 2024. "Robust adaptive LASSO in high-dimensional logistic regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1217-1249, November.
    20. Wang, Shenhao & Mo, Baichuan & Zheng, Yunhan & Hess, Stephane & Zhao, Jinhua, 2024. "Comparing hundreds of machine learning and discrete choice models for travel demand modeling: An empirical benchmark," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.