IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150182.html
   My bibliography  Save this article

Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli

Author

Listed:
  • Jacob Beal
  • Traci Haddock-Angelli
  • Markus Gershater
  • Kim de Mora
  • Meagan Lizarazo
  • Jim Hollenhorst
  • Randy Rettberg
  • iGEM Interlab Study Contributors

Abstract

We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.

Suggested Citation

  • Jacob Beal & Traci Haddock-Angelli & Markus Gershater & Kim de Mora & Meagan Lizarazo & Jim Hollenhorst & Randy Rettberg & iGEM Interlab Study Contributors, 2016. "Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-22, March.
  • Handle: RePEc:plo:pone00:0150182
    DOI: 10.1371/journal.pone.0150182
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150182
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150182&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aaron Mobley & Suzanne K Linder & Russell Braeuer & Lee M Ellis & Leonard Zwelling, 2013. "A Survey on Data Reproducibility in Cancer Research Provides Insights into Our Limited Ability to Translate Findings from the Laboratory to the Clinic," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-4, May.
    2. Drew Endy, 2005. "Foundations for engineering biology," Nature, Nature, vol. 438(7067), pages 449-453, November.
    3. Dae-Kyun Ro & Eric M. Paradise & Mario Ouellet & Karl J. Fisher & Karyn L. Newman & John M. Ndungu & Kimberly A. Ho & Rachel A. Eachus & Timothy S. Ham & James Kirby & Michelle C. Y. Chang & Sydnor T., 2006. "Production of the antimalarial drug precursor artemisinic acid in engineered yeast," Nature, Nature, vol. 440(7086), pages 940-943, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lynn J. Frewer, 2017. "Consumer acceptance and rejection of emerging agrifood technologies and their applications," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(4), pages 683-704.
    2. Chih-Yuan Hsu & Bor-Sen Chen, 2016. "Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    3. Hiroyuki Kuwahara & Chris J Myers & Michael S Samoilov, 2010. "Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-22, March.
    4. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.
    5. VAN DEN OORD, Ad & VAN WITTELOOSTUIJN, Arjen & DUYSTERS, Geert & GILSING, Victor, 2010. "The ecology of technology: An empirical study of US biotechnology patents from 1976 to 2003," ACED Working Papers 2010008, University of Antwerp, Faculty of Business and Economics.
    6. Ashty S. Karim & Dylan M. Brown & Chloé M. Archuleta & Sharisse Grannan & Ludmilla Aristilde & Yogesh Goyal & Josh N. Leonard & Niall M. Mangan & Arthur Prindle & Gabriel J. Rocklin & Keith J. Tyo & L, 2024. "Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Naira R. Matevosyan, 2018. "Techno-borne Organs: Medical, Legal, and Policy Concerns," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(2), pages 544-560, June.
    8. Xixian Chen & Congqiang Zhang & Ruiyang Zou & Kang Zhou & Gregory Stephanopoulos & Heng Phon Too, 2013. "Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis of Amorpha-4,11-diene," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-10, November.
    9. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Frewer, L.J. & Coles, D. & Dijkstra, A.M. & Kuznesof, S. & Kendall, H. & Kaptan, G, 2016. "Synthetic Biology Applied In The Agrifood Sector: Societal Priorities And Pitfalls," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 10(2-3), pages 1-8, October.
    11. Mario A Marchisio & Jörg Stelling, 2011. "Automatic Design of Digital Synthetic Gene Circuits," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-13, February.
    12. Jean Peccoud & Mark Isalan, 2012. "The PLOS ONE Synthetic Biology Collection: Six Years and Counting," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.
    13. Zhiheng Yang & Zilong Li & Bixiao Li & Ruihong Bu & Gao-Yi Tan & Zhengduo Wang & Hao Yan & Zhenguo Xin & Guojian Zhang & Ming Li & Hua Xiang & Lixin Zhang & Weishan Wang, 2023. "A thermostable type I-B CRISPR-Cas system for orthogonal and multiplexed genetic engineering," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Singh PP & Kumar A & Singh R & Vandana & Singh PK & Pandey KD, 2017. "Metabolic Engineering: New Era in Pharmaceuticals," Global Journal of Pharmacy & Pharmaceutical Sciences, Juniper Publishers Inc., vol. 2(5), pages 99-101, June.
    15. Samanthe M Lyons & Wenlong Xu & June Medford & Ashok Prasad, 2014. "Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-16, March.
    16. Jack Chun-Ting Liu & Ricardo De La Peña & Christian Tocol & Elizabeth S. Sattely, 2024. "Reconstitution of early paclitaxel biosynthetic network," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Kelly C Falls & Aimee L Williams & Anton V Bryksin & Ichiro Matsumura, 2014. "Escherichia coli Deletion Mutants Illuminate Trade-Offs between Growth Rate and Flux through a Foreign Anabolic Pathway," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    18. T. Kuiken & G. Dana & K. Oye & D. Rejeski, 2014. "Shaping ecological risk research for synthetic biology," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(3), pages 191-199, September.
    19. Torgersen, Helge & Bogner, Alexander & Kastenhofer, Karen, 2013. "The Power of Framing in Technology Governance: The Case of Biotechnologies (ITA-manu:script 13-01)," ITA manu:scripts 13_01, Institute of Technology Assessment (ITA).
    20. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.