IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001083.html
   My bibliography  Save this article

Automatic Design of Digital Synthetic Gene Circuits

Author

Listed:
  • Mario A Marchisio
  • Jörg Stelling

Abstract

De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input–output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.Author Summary: Synthetic Biology is a novel discipline that aims at the construction of new biological systems able to perform specific tasks. Following the example of electrical engineering, most of the synthetic systems so far realized look like circuits where smaller DNA-encoded components are interconnected by the exchange of different kinds of molecules. According to this modular approach, we developed, in a previous work, a tool for the visual design of new genetic circuits whose components are displayed on the computer screen and connected through hypothetical wires where molecules flow. Here, we present an extension of this tool that automatically computes the structure of a digital gene circuit–where the inputs and the output take only 0/1 values–by applying procedures commonly used in electrical engineering to biology. In this way, our method generalizes and simplifies the design of genetic circuits far more complex than the ones so far realized. Moreover, different from other currently used methods, our approach limits the use of optimization procedures and drastically reduces the computational time necessary to derive the circuit structure. Future improvements can be achieved by exploiting some more biological mechanisms able to mimic Boolean behavior, without a substantial growth of the algorithmic complexity.

Suggested Citation

  • Mario A Marchisio & Jörg Stelling, 2011. "Automatic Design of Digital Synthetic Gene Circuits," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-13, February.
  • Handle: RePEc:plo:pcbi00:1001083
    DOI: 10.1371/journal.pcbi.1001083
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001083
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001083&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Drew Endy, 2005. "Foundations for engineering biology," Nature, Nature, vol. 438(7067), pages 449-453, November.
    2. Wade Winkler & Ali Nahvi & Ronald R. Breaker, 2002. "Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression," Nature, Nature, vol. 419(6910), pages 952-956, October.
    3. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    4. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    2. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    3. Linh Huynh & John Kececioglu & Matthias Köppe & Ilias Tagkopoulos, 2012. "Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    4. Vedhas Pandit & Björn Schuller, 2017. "A Novel Graphical Technique for Combinational Logic Representation and Optimization," Complexity, Hindawi, vol. 2017, pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    2. Lorenzo Pasotti & Nicolò Politi & Susanna Zucca & Maria Gabriella Cusella De Angelis & Paolo Magni, 2012. "Bottom-Up Engineering of Biological Systems through Standard Bricks: A Modularity Study on Basic Parts and Devices," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    3. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    4. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    5. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    6. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    7. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    8. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    9. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    10. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    11. Panagiota DIONYSOPOULOU & Georgios SVARNIAS & Theodore PAPAILIAS, 2021. "Total Quality Management In Public Sector, Case Study: Customs Service," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 153-168, June.
    12. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    13. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    14. Julie Holland Mortimer, 2007. "Price Discrimination, Copyright Law, and Technological Innovation: Evidence from the Introduction of DVDs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1307-1350.
    15. Suwan Shen & Xi Feng & Zhong Ren Peng, 2016. "A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 589-609, October.
    16. Jean-Bernard Chatelain & Kirsten Ralf, 2017. "Can We Identify the Fed's Preferences?," Working Papers halshs-01549908, HAL.
    17. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    18. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    19. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    20. Fischer, Andreas M. & Ranaldo, Angelo, 2011. "Does FOMC news increase global FX trading?," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2965-2973, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.