IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141147.html
   My bibliography  Save this article

Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes

Author

Listed:
  • Wladimir J Alonso
  • Maia A Rabaa
  • Ricardo Giglio
  • Mark A Miller
  • Cynthia Schuck-Paim

Abstract

Existing modeling approaches are divided between a focus on the constitutive (micro) elements of systems or on higher (macro) organization levels. Micro-level models enable consideration of individual histories and interactions, but can be unstable and subject to cumulative errors. Macro-level models focus on average population properties, but may hide relevant heterogeneity at the micro-scale. We present a framework that integrates both approaches through the use of temporally structured matrices that can take large numbers of variables into account. Matrices are composed of several bidimensional (time×age) grids, each representing a state (e.g. physiological, immunological, socio-demographic). Time and age are primary indices linking grids. These matrices preserve the entire history of all population strata and enable the use of historical events, parameters and states dynamically in the modeling process. This framework is applicable across fields, but particularly suitable to simulate the impact of alternative immunization policies. We demonstrate the framework by examining alternative strategies to accelerate measles elimination in 15 developing countries. The model recaptured long-endorsed policies in measles control, showing that where a single routine measles-containing vaccine is employed with low coverage, any improvement in coverage is more effective than a second dose. It also identified an opportunity to save thousands of lives in India at attractively low costs through the implementation of supplementary immunization campaigns. The flexibility of the approach presented enables estimating the effectiveness of different immunization policies in highly complex contexts involving multiple and historical influences from different hierarchical levels.

Suggested Citation

  • Wladimir J Alonso & Maia A Rabaa & Ricardo Giglio & Mark A Miller & Cynthia Schuck-Paim, 2015. "Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0141147
    DOI: 10.1371/journal.pone.0141147
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141147
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141147&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert E. Hall & Charles I. Jones, 2007. "The Value of Life and the Rise in Health Spending," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 39-72.
    2. B. T. Grenfell & O. N. Bjørnstad & J. Kappey, 2001. "Travelling waves and spatial hierarchies in measles epidemics," Nature, Nature, vol. 414(6865), pages 716-723, December.
    3. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    4. Keith Task & Maria Jaramillo & Ipsita Banerjee, 2012. "Population Based Model of Human Embryonic Stem Cell (hESC) Differentiation during Endoderm Induction," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan Yang & Liang Wen & Shen-Long Li & Kai Chen & Wen-Yi Zhang & Jeffrey Shaman, 2017. "Geospatial characteristics of measles transmission in China during 2005−2014," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-21, April.
    2. Gonzalez-Eiras, Martín & Niepelt, Dirk, 2012. "Ageing, government budgets, retirement, and growth," European Economic Review, Elsevier, vol. 56(1), pages 97-115.
    3. Patricia Apps & Ray Rees, 2007. "Population Ageing, Taxation, pensions and Health Costs," Australian Journal of Labour Economics (AJLE), Bankwest Curtin Economics Centre (BCEC), Curtin Business School, vol. 10(2), pages 79-97.
    4. Ho, Sy-Hoa & OUEGHLISSI, Rim & EL FERKTAJI, Riadh, 2019. "The dynamic causality between ESG and economic growth: Evidence from panel causality analysis," MPRA Paper 95390, University Library of Munich, Germany.
    5. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    7. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    8. Herrendorf, Berthold & Rogerson, Richard & Valentinyi, Ákos, 2014. "Growth and Structural Transformation," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 6, pages 855-941, Elsevier.
    9. Ryan Edwards, 2013. "The cost of uncertain life span," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(4), pages 1485-1522, October.
    10. Johan Gustafsson, 2021. "Age-Targeted Income Taxation, Labor Supply, and Retirement," CESifo Working Paper Series 8988, CESifo.
    11. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    12. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    13. Colombier, Carsten & Weber, Werner, 2009. "Projecting health-care expenditure for Switzerland: further evidence against the 'red-herring' hypothesis," MPRA Paper 26747, University Library of Munich, Germany, revised Nov 2009.
    14. Chen, Li-Shiun & Wang, Ping & Yao, Yao, 2018. "Power of personalized smoking cessation: A unified lifecycle framework for policy evaluation," Working Paper Series 20333, Victoria University of Wellington, School of Economics and Finance.
    15. Svetlana Pashchenko & Ponpoje (Poe) Porapakkarm & Mariacristina De Nardi, 2017. "The Lifetime Costs of Bad Health," 2017 Meeting Papers 533, Society for Economic Dynamics.
    16. Kuhn, Michael & Frankovic, Ivan & Wrzaczek, Stefan, 2017. "Medical Progress, Demand for Health Care, and Economic Performance," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168249, Verein für Socialpolitik / German Economic Association.
    17. D. Dragone & H. Strulik, 2017. "Human Health and Aging over an Infinite Time Horizon," Working Papers wp1104, Dipartimento Scienze Economiche, Universita' di Bologna.
    18. Nicolai V. Kuminoff, 2018. "Can Understanding Spatial Equilibria Enhance Benefit Transfers for Environmental Policy Evaluation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(3), pages 591-608, March.
    19. Katherine Baicker & Amitabh Chandra, 2010. "Understanding Agglomerations in Health Care," NBER Chapters, in: Agglomeration Economics, pages 211-236, National Bureau of Economic Research, Inc.
    20. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.