IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126372.html
   My bibliography  Save this article

A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau

Author

Listed:
  • Litong Chen
  • Dan F B Flynn
  • Xin Jing
  • Peter Kühn
  • Thomas Scholten
  • Jin-Sheng He

Abstract

As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth.

Suggested Citation

  • Litong Chen & Dan F B Flynn & Xin Jing & Peter Kühn & Thomas Scholten & Jin-Sheng He, 2015. "A Comparison of Two Methods for Quantifying Soil Organic Carbon of Alpine Grasslands on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
  • Handle: RePEc:plo:pone00:0126372
    DOI: 10.1371/journal.pone.0126372
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126372
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126372&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    2. Martin Heimann & Markus Reichstein, 2008. "Terrestrial ecosystem carbon dynamics and climate feedbacks," Nature, Nature, vol. 451(7176), pages 289-292, January.
    3. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxuan Gou & Dong Liu & Xiangjun Liu & Zhiqing Zhuo & Chongyang Shen & Yunjia Liu & Meng Cao & Yuangfang Huang, 2022. "Scale-Location Dependence Relationship between Soil Organic Matter and Environmental Factors by Anisotropy Analysis and Multiple Wavelet Coherence," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    2. Jing Wang & Xuesong Wang & Fenli Zheng & Hanmei Wei & Miaomiao Zhao & Jianyu Jiao, 2023. "Ecoenzymatic Stoichiometry Reveals Microbial Carbon and Phosphorus Limitations under Elevated CO 2 , Warming and Drought at Different Winter Wheat Growth Stages," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    3. Wenhao Zhang & Guofeng Zhu & Qiaozhuo Wan & Siyu Lu & Ling Zhao & Dongdong Qiu & Xinrui Lin, 2023. "Influence of Irrigation on Vertical Migration of Soil Organic Carbon in Arid Area of Inland River," Land, MDPI, vol. 12(8), pages 1-14, August.
    4. Yonglin Wu & Haitao Li & Xinran Liang & Ming Jiang & Siteng He & Yongmei He, 2025. "Mechanisms Behind the Soil Organic Carbon Response to Temperature Elevations," Agriculture, MDPI, vol. 15(11), pages 1-17, May.
    5. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    6. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. MB Dastagiri & Anjani Sneha Vajrala, 2018. "Financing Climate Change on Global Agriculture-An Overview," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 12(5), pages 148-153, July.
    8. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    9. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    10. Sabastine Ugbemuna Ugbaje & Thomas F.A. Bishop, 2020. "Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multivariate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation," Land, MDPI, vol. 9(1), pages 1-15, January.
    11. Antonella Fatica & Alessio Manzo & Erika Di Iorio & Luana Circelli & Francesco Fantuz & Luca Todini & Thomas W. Crawford & Claudio Colombo & Elisabetta Salimei, 2025. "Apennine Natural Pasture Areas: Soil, Plant, and Livestock Interactions and Ecosystem Characterization," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
    12. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    13. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    14. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    15. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    16. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    17. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    18. Asik Dutta & Ranjan Bhattacharyya & Raimundo Jiménez-Ballesta & Abir Dey & Namita Das Saha & Sarvendra Kumar & Chaitanya Prasad Nath & Ved Prakash & Surendra Singh Jatav & Abhik Patra, 2023. "Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    19. Yongxia Ding & Siqi Liang & Shouzhang Peng, 2019. "Climate Change Affects Forest Productivity in a Typical Climate Transition Region of China," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    20. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.