IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0072086.html
   My bibliography  Save this article

Immune Boosting Explains Regime-Shifts in Prevaccine-Era Pertussis Dynamics

Author

Listed:
  • Jennie S Lavine
  • Aaron A King
  • Viggo Andreasen
  • Ottar N Bjørnstad

Abstract

Understanding the biological mechanisms underlying episodic outbreaks of infectious diseases is one of mathematical epidemiology’s major goals. Historic records are an invaluable source of information in this enterprise. Pertussis (whooping cough) is a re-emerging infection whose intermittent bouts of large multiannual epidemics interspersed between periods of smaller-amplitude cycles remain an enigma. It has been suggested that recent increases in pertussis incidence and shifts in the age-distribution of cases may be due to diminished natural immune boosting. Here we show that a model that incorporates this mechanism can account for a unique set of pre-vaccine-era data from Copenhagen. Under this model, immune boosting induces transient bursts of large amplitude outbreaks. In the face of mass vaccination, the boosting model predicts larger and more frequent outbreaks than do models with permanent or passively-waning immunity. Our results emphasize the importance of understanding the mechanisms responsible for maintaining immune memory for pertussis epidemiology.

Suggested Citation

  • Jennie S Lavine & Aaron A King & Viggo Andreasen & Ottar N Bjørnstad, 2013. "Immune Boosting Explains Regime-Shifts in Prevaccine-Era Pertussis Dynamics," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
  • Handle: RePEc:plo:pone00:0072086
    DOI: 10.1371/journal.pone.0072086
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072086
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0072086&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0072086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helen J Wearing & Pejman Rohani, 2009. "Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures," PLOS Pathogens, Public Library of Science, vol. 5(10), pages 1-11, October.
    2. Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
    3. P. Rohani & C. J. Green & N. B. Mantilla-Beniers & B. T. Grenfell, 2003. "Ecological interference between fatal diseases," Nature, Nature, vol. 422(6934), pages 885-888, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    4. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    5. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    6. Niyousha Hosseinichimeh & Hazhir Rahmandad & Mohammad S. Jalali & Andrea K. Wittenborn, 2016. "Estimating the parameters of system dynamics models using indirect inference," System Dynamics Review, System Dynamics Society, vol. 32(2), pages 154-178, April.
    7. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    8. Ong, Victor M.-H. & Nott, David J. & Tran, Minh-Ngoc & Sisson, Scott A. & Drovandi, Christopher C., 2018. "Likelihood-free inference in high dimensions with synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 271-291.
    9. Aushev, Alexander & Pesonen, Henri & Heinonen, Markus & Corander, Jukka & Kaski, Samuel, 2022. "Likelihood-free inference with deep Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    10. George Karabatsos, 2018. "On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 321-332, June.
    11. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    12. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    13. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    14. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.
    15. Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    16. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, January.
    17. Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    18. Evrendilek, F. & Karakaya, N., 2014. "Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 8-15.
    19. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    20. Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0072086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.