IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0045140.html
   My bibliography  Save this article

Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression

Author

Listed:
  • Etienne Laliberté
  • E Carol Adair
  • Sarah E Hobbie

Abstract

Litter decomposition rate (k) is typically estimated from proportional litter mass loss data using models that assume constant, normally distributed errors. However, such data often show non-normal errors with reduced variance near bounds (0 or 1), potentially leading to biased k estimates. We compared the performance of nonlinear regression using the beta distribution, which is well-suited to bounded data and this type of heteroscedasticity, to standard nonlinear regression (normal errors) on simulated and real litter decomposition data. Although the beta model often provided better fits to the simulated data (based on the corrected Akaike Information Criterion, AICc), standard nonlinear regression was robust to violation of homoscedasticity and gave equally or more accurate k estimates as nonlinear beta regression. Our simulation results also suggest that k estimates will be most accurate when study length captures mid to late stage decomposition (50–80% mass loss) and the number of measurements through time is ≥5. Regression method and data transformation choices had the smallest impact on k estimates during mid and late stage decomposition. Estimates of k were more variable among methods and generally less accurate during early and end stage decomposition. With real data, neither model was predominately best; in most cases the models were indistinguishable based on AICc, and gave similar k estimates. However, when decomposition rates were high, normal and beta model k estimates often diverged substantially. Therefore, we recommend a pragmatic approach where both models are compared and the best is selected for a given data set. Alternatively, both models may be used via model averaging to develop weighted parameter estimates. We provide code to perform nonlinear beta regression with freely available software.

Suggested Citation

  • Etienne Laliberté & E Carol Adair & Sarah E Hobbie, 2012. "Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0045140
    DOI: 10.1371/journal.pone.0045140
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045140
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0045140&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0045140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paolino, Philip, 2001. "Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables," Political Analysis, Cambridge University Press, vol. 9(4), pages 325-346, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Schmid & Florian Wickler & Kelly O Maloney & Richard Mitchell & Nora Fenske & Andreas Mayr, 2013. "Boosted Beta Regression," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Wladislaw Mill & John Morgan, 2022. "The cost of a divided America: an experimental study into destructive behavior," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 974-1001, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latouche, Karine & Rouviere, Elodie, 2011. "Brokers vs. Retailers: Evidence from the French Imports Industry of Fresh Produce," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114398, European Association of Agricultural Economists.
    2. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    3. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    4. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    5. Claus Michelsen & Peter Boenisch & Benny Geys, 2014. "(De)Centralization and voter turnout: theory and evidence from German municipalities," Public Choice, Springer, vol. 159(3), pages 469-483, June.
    6. Lemonte, Artur J. & Cordeiro, Gauss M., 2009. "Birnbaum-Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4441-4452, October.
    7. Espinheira, Patri­cia L. & Ferrari, Silvia L.P. & Cribari-Neto, Francisco, 2008. "Influence diagnostics in beta regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4417-4431, May.
    8. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    9. S. Balia, 2011. "Survival expectations, subjective health and smoking: evidence from European countries," Health, Econometrics and Data Group (HEDG) Working Papers 11/30, HEDG, c/o Department of Economics, University of York.
    10. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    11. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    12. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
    13. Maria Simona Andreano & Roberto Benedetti & Federica Piersimoni & Giovanni Savio, 2021. "Mapping Poverty of Latin American and Caribbean Countries from Heaven Through Night-Light Satellite Images," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 533-562, August.
    14. Mary, Sebastien & Gomez y Paloma, Sergio, 2014. "The Role of Agricultural Growth in Reducing Child Malnutrition," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 168368, Agricultural and Applied Economics Association.
    15. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    16. Guillermo Martínez-Flórez & Heleno Bolfarine & Héctor Gómez, 2015. "Doubly censored power-normal regression models with inflation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 265-286, June.
    17. Durga Prasad Gautam, 2017. "Remittance inflows and starting a business," Journal of Entrepreneurship and Public Policy, Emerald Group Publishing Limited, vol. 6(3), pages 290-314, November.
    18. Linda Gonçalves Veiga, 2013. "Voting functions in the EU-15," Public Choice, Springer, vol. 157(3), pages 411-428, December.
    19. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    20. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0045140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.