IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1010166.html
   My bibliography  Save this article

A practical problem with Egger regression in Mendelian randomization

Author

Listed:
  • Zhaotong Lin
  • Isaac Pan
  • Wei Pan

Abstract

Mendelian randomization (MR) is an instrumental variable (IV) method using genetic variants such as single nucleotide polymorphisms (SNPs) as IVs to disentangle the causal relationship between an exposure and an outcome. Since any causal conclusion critically depends on the three valid IV assumptions, which will likely be violated in practice, MR methods robust to the IV assumptions are greatly needed. As such a method, Egger regression stands out as one of the most widely used due to its easy use and perceived robustness. Although Egger regression is claimed to be robust to directional pleiotropy under the instrument strength independent of direct effect (InSIDE) assumption, it is known to be dependent on the orientations/coding schemes of SNPs (i.e. which allele of an SNP is selected as the reference group). The current practice, as recommended as the default setting in some popular MR software packages, is to orientate the SNPs to be all positively associated with the exposure, which however, to our knowledge, has not been fully studied to assess its robustness and potential impact. We use both numerical examples (with both real data and simulated data) and analytical results to demonstrate the practical problem of Egger regression with respect to its heavy dependence on the SNP orientations. Under the assumption that InSIDE holds for some specific (and unknown) coding scheme of the SNPs, we analytically show that other coding schemes would in general lead to the violation of InSIDE. Other related MR and IV regression methods may suffer from the same problem. Cautions should be taken when applying Egger regression (and related MR and IV regression methods) in practice.Author summary: Egger regression (MR-Egger) has been increasingly applied in Mendelian randomization (MR) analyses for its easy use and perceived robustness, though MR-Egger requires the InSIDE assumption, which in turn depends on the orientation of SNPs. The implications of this dependence to its practical use may not be well understood yet. In particular, it is unrealistic to assume that the InSIDE assumption holds for many or all arbitrarily chosen coding schemes of the SNPs; instead, it is more reasonable to assume that InSIDE holds for only one specific, but usually unknown, coding scheme of SNPs, under which, however, we show that use of other coding schemes of SNPs in general leads to the violation of InSIDE, and thus to biased causal estimates. The technical reason is due to the seemingly non-restrictive assumption of the random direct effects with a non-zero mean (i.e. directional pleiotropy) in MR-Egger (and related methods), which depends on the orientation of SNPs. This problem persists for many other related MR and instrumental variable regression methods, regardless whether GWAS summary data or individual-level data are used. Given the popularity of MR-Egger in practice, one should be aware of this issue and hence be cautious when applying MR-Egger.

Suggested Citation

  • Zhaotong Lin & Isaac Pan & Wei Pan, 2022. "A practical problem with Egger regression in Mendelian randomization," PLOS Genetics, Public Library of Science, vol. 18(5), pages 1-19, May.
  • Handle: RePEc:plo:pgen00:1010166
    DOI: 10.1371/journal.pgen.1010166
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010166
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1010166&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1010166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    2. Zhongshang Yuan & Huanhuan Zhu & Ping Zeng & Sheng Yang & Shiquan Sun & Can Yang & Jin Liu & Xiang Zhou, 2020. "Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Yingchang Lu & Felix R. Day & Stefan Gustafsson & Martin L. Buchkovich & Jianbo Na & Veronique Bataille & Diana L. Cousminer & Zari Dastani & Alexander W. Drong & Tõnu Esko & David M. Evans & Mario Fa, 2016. "New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk," Nature Communications, Nature, vol. 7(1), pages 1-15, April.
    4. Guanghao Qi & Nilanjan Chatterjee, 2019. "Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaotong Lin & Yangqing Deng & Wei Pan, 2021. "Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model," PLOS Genetics, Public Library of Science, vol. 17(11), pages 1-25, November.
    2. Bin Tang & Nan Lin & Junhao Liang & Guorong Yi & Liubin Zhang & Wenjie Peng & Chao Xue & Hui Jiang & Miaoxin Li, 2025. "Leveraging pleiotropic clustering to address high proportion correlated horizontal pleiotropy in Mendelian randomization studies," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Sophie van Huellen & Duo Qin, 2019. "Compulsory Schooling and Returns to Education: A Re-Examination," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    4. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Brigham Frandsen & Lars Lefgren & Emily Leslie, 2023. "Judging Judge Fixed Effects," American Economic Review, American Economic Association, vol. 113(1), pages 253-277, January.
    6. Anna Aizer & Joseph J. Doyle, 2015. "Juvenile Incarceration, Human Capital, and Future Crime: Evidence from Randomly Assigned Judges," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(2), pages 759-803.
    7. Mertens, Matthias & Müller, Steffen & Neuschäffer, Georg, 2022. "Identifying rent-sharing using firms' energy input mix," IWH Discussion Papers 19/2022, Halle Institute for Economic Research (IWH).
    8. Zhaotong Lin & Wei Pan, 2024. "A robust cis-Mendelian randomization method with application to drug target discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2022. "Quasi-Experimental Shift-Share Research Designs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 181-213.
    10. Hans (J.L.W.) van Kippersluis & Niels (C.A.) Rietveld, 2017. "Beyond Plausibly Exogenous," Tinbergen Institute Discussion Papers 17-096/V, Tinbergen Institute.
    11. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    12. Randy L. Parrish & Aron S. Buchman & Shinya Tasaki & Yanling Wang & Denis Avey & Jishu Xu & Philip L. De Jager & David A. Bennett & Michael P. Epstein & Jingjing Yang, 2024. "SR-TWAS: leveraging multiple reference panels to improve transcriptome-wide association study power by ensemble machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Eugenio Levi & Isabelle Sin & Steven Stillman, 2024. "The lasting impact of external shocks on political opinions and populist voting," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 349-374, January.
    14. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    15. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    16. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    17. Nadine Riedel & Martin Simmler, 2021. "Large and influential: Firm size and governments’ corporate tax rate choice," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(2), pages 812-839, May.
    18. Ju-Sheng Zheng & Jian’an Luan & Eleni Sofianopoulou & Stephen J Sharp & Felix R Day & Fumiaki Imamura & Thomas E Gundersen & Luca A Lotta & Ivonne Sluijs & Isobel D Stewart & Rupal L Shah & Yvonne T v, 2020. "The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-21, October.
    19. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    20. Ben-Moshe, Dan & D’Haultfœuille, Xavier & Lewbel, Arthur, 2017. "Identification of additive and polynomial models of mismeasured regressors without instruments," Journal of Econometrics, Elsevier, vol. 200(2), pages 207-222.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1010166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.