IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09432-2.html
   My bibliography  Save this article

Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects

Author

Listed:
  • Guanghao Qi

    (Johns Hopkins University)

  • Nilanjan Chatterjee

    (Johns Hopkins University
    Johns Hopkins University)

Abstract

Mendelian randomization (MR) has emerged as a major tool for the investigation of causal relationship among traits, utilizing results from large-scale genome-wide association studies. Bias due to horizontal pleiotropy, however, remains a major concern. We propose a novel approach for robust and efficient MR analysis using large number of genetic instruments, based on a novel spike-detection algorithm under a normal-mixture model for underlying effect-size distributions. Simulations show that the new method, MRMix, provides nearly unbiased or/and less biased estimates of causal effects compared to alternative methods and can achieve higher efficiency than comparably robust estimators. Application of MRMix to publicly available datasets leads to notable observations, including identification of causal effects of BMI and age-at-menarche on the risk of breast cancer; no causal effect of HDL and triglycerides on the risk of coronary artery disease; a strong detrimental effect of BMI on the risk of major depressive disorder.

Suggested Citation

  • Guanghao Qi & Nilanjan Chatterjee, 2019. "Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09432-2
    DOI: 10.1038/s41467-019-09432-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09432-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09432-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Cheng & Xiao Zhang & Lin S. Chen & Jin Liu, 2022. "Mendelian randomization accounting for complex correlated horizontal pleiotropy while elucidating shared genetic etiology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ju-Sheng Zheng & Jian’an Luan & Eleni Sofianopoulou & Stephen J Sharp & Felix R Day & Fumiaki Imamura & Thomas E Gundersen & Luca A Lotta & Ivonne Sluijs & Isobel D Stewart & Rupal L Shah & Yvonne T v, 2020. "The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-21, October.
    3. Yihe Yang & Noah Lorincz-Comi & Xiaofeng Zhu, 2023. "Unbiased estimation and asymptotically valid inference in multivariable Mendelian randomization with many weak instrumental variables," Papers 2301.05130, arXiv.org, revised Feb 2024.
    4. Haoran Xue & Wei Pan, 2020. "Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-30, November.
    5. Zhaotong Lin & Yangqing Deng & Wei Pan, 2021. "Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model," PLOS Genetics, Public Library of Science, vol. 17(11), pages 1-25, November.
    6. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09432-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.