IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009021.html
   My bibliography  Save this article

Evaluation of polygenic prediction methodology within a reference-standardized framework

Author

Listed:
  • Oliver Pain
  • Kylie P Glanville
  • Saskia P Hagenaars
  • Saskia Selzam
  • Anna E Fürtjes
  • Héléna A Gaspar
  • Jonathan R I Coleman
  • Kaili Rimfeld
  • Gerome Breen
  • Robert Plomin
  • Lasse Folkersen
  • Cathryn M Lewis

Abstract

The predictive utility of polygenic scores is increasing, and many polygenic scoring methods are available, but it is unclear which method performs best. This study evaluates the predictive utility of polygenic scoring methods within a reference-standardized framework, which uses a common set of variants and reference-based estimates of linkage disequilibrium and allele frequencies to construct scores. Eight polygenic score methods were tested: p-value thresholding and clumping (pT+clump), SBLUP, lassosum, LDpred1, LDpred2, PRScs, DBSLMM and SBayesR, evaluating their performance to predict outcomes in UK Biobank and the Twins Early Development Study (TEDS). Strategies to identify optimal p-value threshold and shrinkage parameters were compared, including 10-fold cross validation, pseudovalidation and infinitesimal models (with no validation sample), and multi-polygenic score elastic net models. LDpred2, lassosum and PRScs performed strongly using 10-fold cross-validation to identify the most predictive p-value threshold or shrinkage parameter, giving a relative improvement of 16–18% over pT+clump in the correlation between observed and predicted outcome values. Using pseudovalidation, the best methods were PRScs, DBSLMM and SBayesR. PRScs pseudovalidation was only 3% worse than the best polygenic score identified by 10-fold cross validation. Elastic net models containing polygenic scores based on a range of parameters consistently improved prediction over any single polygenic score. Within a reference-standardized framework, the best polygenic prediction was achieved using LDpred2, lassosum and PRScs, modeling multiple polygenic scores derived using multiple parameters. This study will help researchers performing polygenic score studies to select the most powerful and predictive analysis methods.Author summary: An individual’s genetic predisposition to a given outcome can be summarized using polygenic scores. Polygenic scores are widely used in research and could also be used in a clinical setting to enhance personalized medicine. A range of methods have been developed for calculating polygenic scores, but it is unclear which methods are the best. Several methods provide multiple polygenic scores for each individual which must then be tested in an independent tuning sample to identify which polygenic score is most accurate. Other methods provide a single polygenic score and therefore do not require a tuning sample. Our study compares the prediction accuracy of eight leading polygenic scoring methods in a range of contexts. For methods that calculate multiple polygenic scores, we find that LDpred2, lassosum, and PRScs methods perform best on average. For methods that provide a single polygenic score, not requiring a tuning sample, we find PRScs performs best, and the faster DBSLMM and SBayesR methods also perform well. Our study has provided a comprehensive comparison of polygenic scoring methods that will guide future implementation of polygenic scores in both research and clinical settings.

Suggested Citation

  • Oliver Pain & Kylie P Glanville & Saskia P Hagenaars & Saskia Selzam & Anna E Fürtjes & Héléna A Gaspar & Jonathan R I Coleman & Kaili Rimfeld & Gerome Breen & Robert Plomin & Lasse Folkersen & Cathry, 2021. "Evaluation of polygenic prediction methodology within a reference-standardized framework," PLOS Genetics, Public Library of Science, vol. 17(5), pages 1-22, May.
  • Handle: RePEc:plo:pgen00:1009021
    DOI: 10.1371/journal.pgen.1009021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009021
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Dudbridge, 2013. "Power and Predictive Accuracy of Polygenic Risk Scores," PLOS Genetics, Public Library of Science, vol. 9(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenichi Yamamoto & Kyuto Sonehara & Shinichi Namba & Takahiro Konuma & Hironori Masuko & Satoru Miyawaki & Yoichiro Kamatani & Nobuyuki Hizawa & Keiichi Ozono & Loic Yengo & Yukinori Okada, 2023. "Genetic footprints of assortative mating in the Japanese population," Nature Human Behaviour, Nature, vol. 7(1), pages 65-73, January.
    2. Remo Monti & Pia Rautenstrauch & Mahsa Ghanbari & Alva Rani James & Matthias Kirchler & Uwe Ohler & Stefan Konigorski & Christoph Lippert, 2022. "Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    2. Cornelius A. Rietveld & Pankaj C. Patel, 2019. "ADHD and later-life labor market outcomes in the United States," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(7), pages 949-967, September.
    3. Pietro Biroli & Titus Galama & Stephanie von Hinke & Hans van Kippersluis & Kevin Thom, 2022. "Economics and Econometrics of Gene-Environment Interplay," Bristol Economics Discussion Papers 22/759, School of Economics, University of Bristol, UK.
    4. George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xu, Yilan & Briley, Daniel A. & Brown, Jeffrey R. & Roberts, Brent W., 2017. "Genetic and environmental influences on household financial distress," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 404-424.
    6. John Beshears & James J. Choi & David Laibson & Brigitte C. Madrian & Katherine L. Milkman, 2015. "The Effect of Providing Peer Information on Retirement Savings Decisions," Journal of Finance, American Finance Association, vol. 70(3), pages 1161-1201, June.
    7. Effraimidis, Georgios & Levine, Morgan & Crimmins, Eileen, 2016. "Measuring the Effect of the Polygenic Risk Score on the Aging Rate," DaCHE discussion papers 2016:7, University of Southern Denmark, Dache - Danish Centre for Health Economics.
    8. Joey Ward & Nicholas Graham & Rona J Strawbridge & Amy Ferguson & Gregory Jenkins & Wenan Chen & Karen Hodgson & Mark Frye & Richard Weinshilboum & Rudolf Uher & Cathryn M Lewis & Joanna Biernacka & D, 2018. "Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response: Meta-analysis of three treatment cohorts," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-8, September.
    9. Bingxin Zhao & Fei Zou, 2022. "On polygenic risk scores for complex traits prediction," Biometrics, The International Biometric Society, vol. 78(2), pages 499-511, June.
    10. Keira J A Johnston & Joey Ward & Pradipta R Ray & Mark J Adams & Andrew M McIntosh & Blair H Smith & Rona J Strawbridge & Theodore J Price & Daniel J Smith & Barbara I Nicholl & Mark E S Bailey, 2021. "Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank," PLOS Genetics, Public Library of Science, vol. 17(4), pages 1-27, April.
    11. Jasmin Wertz & Terrie E. Moffitt & Louise Arseneault & J. C. Barnes & Michel Boivin & David L. Corcoran & Andrea Danese & Robert J. Hancox & HonaLee Harrington & Renate M. Houts & Stephanie Langevin &, 2023. "Genetic associations with parental investment from conception to wealth inheritance in six cohorts," Nature Human Behaviour, Nature, vol. 7(8), pages 1388-1401, August.
    12. Bertoni, M.; & Marin-Lopez, B.A.; & Sanz-de-Galdeano, A.;, 2023. "Subjective Gender-Based Patterns in ADHD Diagnosis," Health, Econometrics and Data Group (HEDG) Working Papers 23/17, HEDG, c/o Department of Economics, University of York.
    13. Paul Hufe & Andreas Peichl, 2020. "Beyond Equal Rights: Equality of Opportunity in Political Participation," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 477-511, September.
    14. Peter M Visscher & Gibran Hemani & Anna A E Vinkhuyzen & Guo-Bo Chen & Sang Hong Lee & Naomi R Wray & Michael E Goddard & Jian Yang, 2014. "Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples," PLOS Genetics, Public Library of Science, vol. 10(4), pages 1-10, April.
    15. Chabris, C. F. & Lee, J. J. & Cesarini, D. & Benjamin, D. J. & Laibson, David I., 2015. "The Fourth Law of Behavior Genetics," Scholarly Articles 30780203, Harvard University Department of Economics.
    16. Pereira, Rita & Biroli, Pietro & von hinke, stephanie & Van Kippersluis, Hans & Galama, Titus & Rietveld, Niels & Thom, Kevin, 2022. "Gene-Environment Interplay in the Social Sciences," OSF Preprints d96z3, Center for Open Science.
    17. Steven F. Lehrer & Weili Ding, 2017. "Are genetic markers of interest for economic research?," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 6(1), pages 1-23, December.
    18. Cornelius A. Rietveld & Eric A.W. Slob & A. Roy Thurik, 2021. "A decade of research on the genetics of entrepreneurship: a review and view ahead," Small Business Economics, Springer, vol. 57(3), pages 1303-1317, October.
    19. María Gordillo-Marañón & Magdalena Zwierzyna & Pimphen Charoen & Fotios Drenos & Sandesh Chopade & Tina Shah & Jorgen Engmann & Nishi Chaturvedi & Olia Papacosta & Goya Wannamethee & Andrew Wong & Ree, 2021. "Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Trejo, Sam, 2020. "Exploring Genetic Influences on Birth Weight," SocArXiv 7j59q, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.