IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1001289.html
   My bibliography  Save this article

A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease

Author

Listed:
  • Iuliana Ionita-Laza
  • Joseph D Buxbaum
  • Nan M Laird
  • Christoph Lange

Abstract

Rapid advances in sequencing technologies set the stage for the large-scale medical sequencing efforts to be performed in the near future, with the goal of assessing the importance of rare variants in complex diseases. The discovery of new disease susceptibility genes requires powerful statistical methods for rare variant analysis. The low frequency and the expected large number of such variants pose great difficulties for the analysis of these data. We propose here a robust and powerful testing strategy to study the role rare variants may play in affecting susceptibility to complex traits. The strategy is based on assessing whether rare variants in a genetic region collectively occur at significantly higher frequencies in cases compared with controls (or vice versa). A main feature of the proposed methodology is that, although it is an overall test assessing a possibly large number of rare variants simultaneously, the disease variants can be both protective and risk variants, with moderate decreases in statistical power when both types of variants are present. Using simulations, we show that this approach can be powerful under complex and general disease models, as well as in larger genetic regions where the proportion of disease susceptibility variants may be small. Comparisons with previously published tests on simulated data show that the proposed approach can have better power than the existing methods. An application to a recently published study on Type-1 Diabetes finds rare variants in gene IFIH1 to be protective against Type-1 Diabetes.Author Summary: Risk to common diseases, such as diabetes, heart disease, etc., is influenced by a complex interaction among genetic and environmental factors. Most of the disease-association studies conducted so far have focused on common variants, widely available on genotyping platforms. However, recent advances in sequencing technologies pave the way for large-scale medical sequencing studies with the goal of elucidating the role rare variants may play in affecting susceptibility to complex traits. The large number of rare variants and their low frequencies pose great challenges for the analysis of these data. We present here a novel testing strategy, based on a weighted-sum statistic, that is less sensitive than existing methods to the presence of both risk and protective variants in the genetic region under investigation. We show applications to simulated data and to a real dataset on Type-1 Diabetes.

Suggested Citation

  • Iuliana Ionita-Laza & Joseph D Buxbaum & Nan M Laird & Christoph Lange, 2011. "A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-6, February.
  • Handle: RePEc:plo:pgen00:1001289
    DOI: 10.1371/journal.pgen.1001289
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001289
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001289&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1001289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    2. Zheng Xu & Song Yan & Cong Wu & Qing Duan & Sixia Chen & Yun Li, 2023. "Next-Generation Sequencing Data-Based Association Testing of a Group of Genetic Markers for Complex Responses Using a Generalized Linear Model Framework," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    3. Zheng Xu, 2023. "Association Testing of a Group of Genetic Markers Based on Next-Generation Sequencing Data and Continuous Response Using a Linear Model Framework," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    4. Ren-Hua Chung & Wei-Yun Tsai & Eden R Martin, 2014. "Family-Based Association Test Using Both Common and Rare Variants and Accounting for Directions of Effects for Sequencing Data," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    5. Martin Ladouceur & Zari Dastani & Yurii S Aulchenko & Celia M T Greenwood & J Brent Richards, 2012. "The Empirical Power of Rare Variant Association Methods: Results from Sanger Sequencing in 1,998 Individuals," PLOS Genetics, Public Library of Science, vol. 8(2), pages 1-11, February.
    6. Daniel D Kinnamon & Ray E Hershberger & Eden R Martin, 2012. "Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    7. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    2. Aida Bianco & Eusebio Chiefari & Carmelo G A Nobile & Daniela Foti & Maria Pavia & Antonio Brunetti, 2015. "The Association between HMGA1 rs146052672 Variant and Type 2 Diabetes: A Transethnic Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    3. Yumei Yang & Qishan Wang & Qiang Chen & Rongrong Liao & Xiangzhe Zhang & Hongjie Yang & Youmin Zheng & Zhiwu Zhang & Yuchun Pan, 2014. "A New Genotype Imputation Method with Tolerance to High Missing Rate and Rare Variants," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    4. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    5. Dominic Russ & John A Williams & Victor Roth Cardoso & Laura Bravo-Merodio & Samantha C Pendleton & Furqan Aziz & Animesh Acharjee & Georgios V Gkoutos, 2022. "Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-19, February.
    6. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    7. Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    8. Janet Currie, 2011. "Ungleichheiten bei der Geburt: Einige Ursachen und Folgen," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 12(s1), pages 42-65, May.
    9. Karen Kapur & Toby Johnson & Noam D Beckmann & Joban Sehmi & Toshiko Tanaka & Zoltán Kutalik & Unnur Styrkarsdottir & Weihua Zhang & Diana Marek & Daniel F Gudbjartsson & Yuri Milaneschi & Hilma Holm , 2010. "Genome-Wide Meta-Analysis for Serum Calcium Identifies Significantly Associated SNPs near the Calcium-Sensing Receptor (CASR) Gene," PLOS Genetics, Public Library of Science, vol. 6(7), pages 1-12, July.
    10. Kettlewell, Nathan & Tymula, Agnieszka & Yoo, Hong Il, 2023. "The Heritability of Economic Preferences," IZA Discussion Papers 16633, Institute of Labor Economics (IZA).
    11. Gang Fang & Majda Haznadar & Wen Wang & Haoyu Yu & Michael Steinbach & Timothy R Church & William S Oetting & Brian Van Ness & Vipin Kumar, 2012. "High-Order SNP Combinations Associated with Complex Diseases: Efficient Discovery, Statistical Power and Functional Interactions," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-15, April.
    12. Kozlitina Julia & Schucany William R., 2015. "A robust distribution-free test for genetic association studies of quantitative traits," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 443-464, November.
    13. Le Rouzic, Arnaud & Skaug, Hans J. & Hansen, Thomas F., 2010. "Estimating genetic architectures from artificial-selection responses: A random-effect framework," Theoretical Population Biology, Elsevier, vol. 77(2), pages 119-130.
    14. Janet Currie, 2011. "Inequality at Birth: Some Causes and Consequences," American Economic Review, American Economic Association, vol. 101(3), pages 1-22, May.
    15. Shashaank Vattikuti & Juen Guo & Carson C Chow, 2012. "Heritability and Genetic Correlations Explained by Common SNPs for Metabolic Syndrome Traits," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-8, March.
    16. Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
    17. Pan, Qing & Zhao, Yunpeng, 2016. "Integrative weighted group lasso and generalized local quadratic approximation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 66-78.
    18. Qiuyi Zhang & Yang Zhao & Ruyang Zhang & Yongyue Wei & Honggang Yi & Fang Shao & Feng Chen, 2016. "A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    19. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    20. Patrick Murigu Kamau Njage & Clementine Henri & Pimlapas Leekitcharoenphon & Michel‐Yves Mistou & Rene S. Hendriksen & Tine Hald, 2019. "Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1397-1413, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1001289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.