IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000491.html
   My bibliography  Save this article

Evaluating the generalisability of region-naïve machine learning algorithms for the identification of epilepsy in low-resource settings

Author

Listed:
  • Ioana Duta
  • Symon M Kariuki
  • Anthony K Ngugi
  • Angelina Kakooza Mwesige
  • Honorati Masanja
  • Daniel M Mwanga
  • Seth Owusu-Agyei
  • Ryan Wagner
  • J Helen Cross
  • Josemir W Sander
  • Charles R Newton
  • Arjune Sen
  • Gabriel Davis Jones

Abstract

Objectives: Approximately 80% of people with epilepsy live in low- and middle-income countries (LMICs), where limited resources and stigma hinder accurate diagnosis and treatment. Clinical machine learning models have demonstrated substantial promise in supporting the diagnostic process in LMICs by aiding in preliminary screening and detection of possible epilepsy cases without relying on specialised or trained personnel. How well these models generalise to naïve regions is, however, underexplored. Here, we use a novel approach to assess the suitability and applicability of such clinical tools to aid screening and diagnosis of active convulsive epilepsy in settings beyond their original training contexts. Methods: We sourced data from the Study of Epidemiology of Epilepsy in Demographic Sites dataset, which includes demographic information and clinical variables related to diagnosing epilepsy across five sub-Saharan African sites. For each site, we developed a region-specific (single-site) predictive model for epilepsy and assessed its performance at other sites. We then iteratively added sites to a multi-site model and evaluated model performance on the omitted regions. Model performances and parameters were then compared across every permutation of sites. We used a leave-one-site-out cross-validation analysis to assess the impact of incorporating individual site data in the model. Results: Single-site clinical models performed well within their own regions, but generally worse when evaluated in other regions (p

Suggested Citation

  • Ioana Duta & Symon M Kariuki & Anthony K Ngugi & Angelina Kakooza Mwesige & Honorati Masanja & Daniel M Mwanga & Seth Owusu-Agyei & Ryan Wagner & J Helen Cross & Josemir W Sander & Charles R Newton & , 2025. "Evaluating the generalisability of region-naïve machine learning algorithms for the identification of epilepsy in low-resource settings," PLOS Digital Health, Public Library of Science, vol. 4(2), pages 1-17, February.
  • Handle: RePEc:plo:pdig00:0000491
    DOI: 10.1371/journal.pdig.0000491
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000491
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000491&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    2. Hampshire, Kate & Porter, Gina & Owusu, Samuel Asiedu & Mariwah, Simon & Abane, Albert & Robson, Elsbeth & Munthali, Alister & DeLannoy, Ariane & Bango, Andisiwe & Gunguluza, Nwabisa & Milner, James, 2015. "Informal m-health: How are young people using mobile phones to bridge healthcare gaps in Sub-Saharan Africa?," Social Science & Medicine, Elsevier, vol. 142(C), pages 90-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    5. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    7. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Ali Rezaei & Virág Kocsis-Jutka & Zeynep I. Gunes & Qing Zeng & Georg Kislinger & Franz Bauernschmitt & Huseyin Berkcan Isilgan & Laura R. Parisi & Tuğberk Kaya & Sören Franzenburg & Jonas Koppenbrink, 2025. "Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Venkat Ram Reddy Ganuthula & Krishna Kumar Balaraman & Nimish Vohra, 2025. "Hedonic Adaptation in the Age of AI: A Perspective on Diminishing Satisfaction Returns in Technology Adoption," Papers 2503.08074, arXiv.org.
    13. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    14. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Matt C. J. Denton & Luke D. Smith & Wenhao Xu & Jodeci Pugsley & Amelia Toghill & Daniel R. Kattnig, 2024. "Magnetosensitivity of tightly bound radical pairs in cryptochrome is enabled by the quantum Zeno effect," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    17. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Alam, Mohammad Zahedul & Hu, Wang & Kaium, Md Abdul & Hoque, Md Rakibul & Alam, Mirza Mohammad Didarul, 2020. "Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach," Technology in Society, Elsevier, vol. 61(C).
    19. Mite Mijalkov & Ludvig Storm & Blanca Zufiria-Gerbolés & Dániel Veréb & Zhilei Xu & Anna Canal-Garcia & Jiawei Sun & Yu-Wei Chang & Hang Zhao & Emiliano Gómez-Ruiz & Massimiliano Passaretti & Sara Gar, 2025. "Computational memory capacity predicts aging and cognitive decline," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.