IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012870.html
   My bibliography  Save this article

Exploring the transmission of cognitive task information through optimal brain pathways

Author

Listed:
  • Zhengdong Wang
  • Yifeixue Yang
  • Ziyi Huang
  • Wanyun Zhao
  • Kaiqiang Su
  • Hengcheng Zhu
  • Dazhi Yin

Abstract

Understanding the large-scale information processing that underlies complex human cognition is the central goal of cognitive neuroscience. While emerging activity flow models demonstrate that cognitive task information is transferred by interregional functional or structural connectivity, graph-theory-based models typically assume that neural communication occurs via the shortest path of brain networks. However, whether the shortest path is the optimal route for empirical cognitive information transmission remains unclear. Based on a large-scale activity flow mapping framework, we found that the performance of activity flow prediction with the shortest path was significantly lower than that with the direct path. The shortest path routing was superior to other network communication strategies, including search information, path ensembles, and navigation. Intriguingly, the shortest path outperformed the direct path in activity flow prediction when the physical distance constraint and asymmetric routing contribution were simultaneously considered. This study not only challenges the shortest path assumption through empirical network models but also suggests that cognitive task information routing is constrained by the spatial and functional embedding of the brain network.Author summary: A fundamental concern of cognitive neuroscience is the emergence of the complex brain functions in humans. The transmission of neural signals in the brain is thought to be fundamental to cognition. However, it remains unclear how does cognitive information transmit effectively from the perspective of large-scale brain networks. While graph theory is innately dedicated to characterizing brain networks, there is still a gap between graph routing protocols and cognitive task activity. To this end, we test whether the graph-theory-based shortest path outperforms direct path and decentralized network communication routes leveraging empirical activity flow modeling. Results demonstrate that shortest path routing is superior to other network communication strategies in activity flow prediction, but inferior to direct path routing. Importantly, the incorporation of spatial distance and functional asymmetry improves prediction accuracy. This study not only sheds light on the mechanistic relationships between cognitive task activation, resting-state network topology, spatial geometry, and functional embedding, but also advances our understanding of complex communication mechanisms of the human brain.

Suggested Citation

  • Zhengdong Wang & Yifeixue Yang & Ziyi Huang & Wanyun Zhao & Kaiqiang Su & Hengcheng Zhu & Dazhi Yin, 2025. "Exploring the transmission of cognitive task information through optimal brain pathways," PLOS Computational Biology, Public Library of Science, vol. 21(3), pages 1-28, March.
  • Handle: RePEc:plo:pcbi00:1012870
    DOI: 10.1371/journal.pcbi.1012870
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012870
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012870&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianmin Wang & Shuwang Wu & Zixiang Zhao & Haixiang Guo & Wenxue Chen, 2025. "Optimization of emergency rescue routes after a violent earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4585-4613, March.
    2. Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
    3. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    4. Cao, Pengliang & Zheng, Yujing & Yuen, Kum Fai & Ji, Yuxiong, 2023. "Inter-terminal transportation for an offshore port integrating an inland container depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    5. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    6. Luss, Hanan & Wong, Richard T., 2005. "Graceful reassignment of excessively long communications paths in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 395-415, January.
    7. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    8. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    9. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    10. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    11. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    12. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    13. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    15. T. Gomes & J. Craveirinha & L. Jorge, 2010. "An effective algorithm for obtaining the whole set of minimal cost pairs of disjoint paths with dual arc costs," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 394-414, April.
    16. Zhou, Bo & Eskandarian, Azim, 2006. "A Non-Deterministic Path Generation Algorithm for Traffic Networks," 47th Annual Transportation Research Forum, New York, New York, March 23-25, 2006 208047, Transportation Research Forum.
    17. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    18. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    19. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    20. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.