IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012301.html
   My bibliography  Save this article

Bayesian clustering with uncertain data

Author

Listed:
  • Kath Nicholls
  • Paul D W Kirk
  • Chris Wallace

Abstract

Clustering is widely used in bioinformatics and many other fields, with applications from exploratory analysis to prediction. Many types of data have associated uncertainty or measurement error, but this is rarely used to inform the clustering. We present Dirichlet Process Mixtures with Uncertainty (DPMUnc), an extension of a Bayesian nonparametric clustering algorithm which makes use of the uncertainty associated with data points. We show that DPMUnc out-performs existing methods on simulated data. We cluster immune-mediated diseases (IMD) using GWAS summary statistics, which have uncertainty linked with the sample size of the study. DPMUnc separates autoimmune from autoinflammatory diseases and isolates other subgroups such as adult-onset arthritis. We additionally consider how DPMUnc can be used to cluster gene expression datasets that have been summarised using gene signatures. We first introduce a novel procedure for generating a summary of a gene signature on a dataset different to the one where it was discovered, which incorporates a measure of the variability in expression across signature genes within each individual. We summarise three public gene expression datasets containing patients with a range of IMD, using three relevant gene signatures. We find association between disease and the clusters returned by DPMUnc, with clustering structure replicated across the datasets. The significance of this work is two-fold. Firstly, we demonstrate that when data has associated uncertainty, this uncertainty should be used to inform clustering and we present a method which does this, DPMUnc. Secondly, we present a procedure for using gene signatures in datasets other than where they were originally defined. We show the value of this procedure by summarising gene expression data from patients with immune-mediated diseases using relevant gene signatures, and clustering these patients using DPMUnc.Author summary: Identifying groups of items that are similar to each other, a process called clustering, has a range of applications. For example, if patients split into two distinct groups this suggests that a disease may have subtypes which should be treated differently. Real data often has measurement error associated with it, but this error is frequently discarded by clustering methods. We propose a clustering method which makes use of the measurement error and use it to cluster diseases linked to the immune system. Gene expression datasets measure the activity level of all ∼20,000 genes in the human genome. We propose a procedure for summarising gene expression data using gene signatures, lists of genes produced by highly focused studies. For example, a study might list the genes which increase activity after exposure to a particular virus. The genes in the gene signature may not be as tightly correlated in a new dataset, and so our procedure measures the strength of the gene signature in the new dataset, effectively defining measurement error for the summary. We summarise gene expression datasets related to the immune system using relevant gene signatures and find that our method groups patients with the same disease.

Suggested Citation

  • Kath Nicholls & Paul D W Kirk & Chris Wallace, 2024. "Bayesian clustering with uncertain data," PLOS Computational Biology, Public Library of Science, vol. 20(9), pages 1-17, September.
  • Handle: RePEc:plo:pcbi00:1012301
    DOI: 10.1371/journal.pcbi.1012301
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012301
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012301&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    2. Wouter Saelens & Robrecht Cannoodt & Yvan Saeys, 2018. "A comprehensive evaluation of module detection methods for gene expression data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    2. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    3. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," Working Papers 2022-2, Princeton University. Economics Department..
    4. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    5. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    7. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    8. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    9. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    10. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    11. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    12. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    13. Andrew Clark & Alexander Mihailov & Michael Zargham, 2024. "Complex Systems Modeling of Community Inclusion Currencies," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1259-1294, August.
    14. Juliane Begenau & Emil N. Siriwardane, 2024. "Fee Variation in Private Equity," Journal of Finance, American Finance Association, vol. 79(2), pages 1199-1247, April.
    15. Nicoleta Serban, 2008. "Estimating and clustering curves in the presence of heteroscedastic errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 553-571.
    16. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    17. Alessandro Crimi & Olivier Commowick & Adil Maarouf & Jean-Christophe Ferré & Elise Bannier & Ayman Tourbah & Isabelle Berry & Jean-Philippe Ranjeva & Gilles Edan & Christian Barillot, 2014. "Predictive Value of Imaging Markers at Multiple Sclerosis Disease Onset Based on Gadolinium- and USPIO-Enhanced MRI and Machine Learning," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    18. Mehmet Çağlar & Cem Gürler, 2022. "Sustainable Development Goals: A cluster analysis of worldwide countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8593-8624, June.
    19. Elizabeth Tipton & Robert B. Olsen, "undated". "Enhancing the Generalizability of Impact Studies in Education," Mathematica Policy Research Reports 35d5625333dc480aba9765b3b, Mathematica Policy Research.
    20. Paloma Péligry & Xavier Ragot, 2025. "Evolution of Fiscal Systems: Convergence or Divergence?," LIS Working papers 895, LIS Cross-National Data Center in Luxembourg.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.