IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012138.html
   My bibliography  Save this article

Optimal control of agent-based models via surrogate modeling

Author

Listed:
  • Luis L Fonseca
  • Lucas Böttcher
  • Borna Mehrad
  • Reinhard C Laubenbacher

Abstract

This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers the solution back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used. There is a broad range of applications for such an algorithm, since ABMs are used widely in the life sciences, such as ecology, epidemiology, and biomedicine and healthcare, areas where optimal control is an important purpose for modeling, such as for medical digital twin technology.Author summary: The motivation for the work reported in this paper is the development of mathematical tools for medical digital twins. Based on a computational model of some aspects of human biology, there is a two-way interaction between the physical twin (the patient) and the digital twin (the model). In one direction, the model is periodically calibrated with patient-derived data to evolve alongside the patient, transforming it into a digital twin. In the other direction, optimal interventions derived from the digital twin are administered to the patient. In many cases, there is a lack of readily available methods for optimal control in the underlying computational model, making it challenging to identify effective interventions. This is particularly true for model types such as agent-based models (ABMs), which are often more suitable in the context of medical digital twins than models based on ordinary differential equations (ODEs). In this paper, we present an algorithm that takes a general ABM and an optimal control problem as inputs and provides a solution to the control problem as output. This is accomplished by first constructing a surrogate ODE model, solving the optimal control problem, and then transferring the solution back to the ABM. The algorithm supports several types of surrogate models, ranging from those that implement mechanistic features of the ABM to purely phenomenological models. The algorithm is validated by applying it to a predator-prey ABM and a metabolic network represented as an ABM.

Suggested Citation

  • Luis L Fonseca & Lucas Böttcher & Borna Mehrad & Reinhard C Laubenbacher, 2025. "Optimal control of agent-based models via surrogate modeling," PLOS Computational Biology, Public Library of Science, vol. 21(1), pages 1-27, January.
  • Handle: RePEc:plo:pcbi00:1012138
    DOI: 10.1371/journal.pcbi.1012138
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012138
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012138&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    2. Lucas Böttcher & Thomas Asikis & Ioannis Fragkos, 2023. "Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1308-1328, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    4. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    5. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    6. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    7. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    8. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    9. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).
    10. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).
    11. Graciá, Eva & Rodríguez-Caro, Roberto C. & Sanz-Aguilar, Ana & Anadón, José D. & Botella, Francisco & García-García, Angel Luis & Wiegand, Thorsten & Giménez, Andrés, 2020. "Assessment of the key evolutionary traits that prevent extinctions in human-altered habitats using a spatially explicit individual-based model," Ecological Modelling, Elsevier, vol. 415(C).
    12. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    13. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    14. Ahmadreza Asgharpourmasouleh & Atiye Sadeghi & Ali Yousofi, 2017. "A Grounded Agent-Based Model of Common Good Production in a Residential Complex: Applying Artificial Experiments," SAGE Open, , vol. 7(4), pages 21582440177, October.
    15. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    16. Student, Jillian & Kramer, Mark R. & Steinmann, Patrick, 2020. "Simulating emerging coastal tourism vulnerabilities: an agent-based modelling approach," Annals of Tourism Research, Elsevier, vol. 85(C).
    17. Ascensão, Fernando & Clevenger, Anthony & Santos-Reis, Margarida & Urbano, Paulo & Jackson, Nathan, 2013. "Wildlife–vehicle collision mitigation: Is partial fencing the answer? An agent-based model approach," Ecological Modelling, Elsevier, vol. 257(C), pages 36-43.
    18. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    19. Brito, Izabella de Andrade & López-Barrera, Ellie Anne & Araújo, Sabrina Borges Lino & Ribeiro, Ciro Alberto de Oliveira, 2017. "Modeling the exposure risk of the silver catfish Rhamdia quelen (Teleostei, Heptapteridae) to wastewater," Ecological Modelling, Elsevier, vol. 347(C), pages 40-49.
    20. Myong-Hun Chang & Troy Tassier, 2023. "Spatial Disparities in Vaccination and the Risk of Infection in a Multi-Region Agent-Based Model of Epidemic Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(3), pages 1-3.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.