IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010771.html
   My bibliography  Save this article

Recalibrating probabilistic forecasts of epidemics

Author

Listed:
  • Aaron Rumack
  • Ryan J Tibshirani
  • Roni Rosenfeld

Abstract

Distributional forecasts are important for a wide variety of applications, including forecasting epidemics. Often, forecasts are miscalibrated, or unreliable in assigning uncertainty to future events. We present a recalibration method that can be applied to a black-box forecaster given retrospective forecasts and observations, as well as an extension to make this method more effective in recalibrating epidemic forecasts. This method is guaranteed to improve calibration and log score performance when trained and measured in-sample. We also prove that the increase in expected log score of a recalibrated forecaster is equal to the entropy of the PIT distribution. We apply this recalibration method to the 27 influenza forecasters in the FluSight Network and show that recalibration reliably improves forecast accuracy and calibration. This method, available on Github, is effective, robust, and easy to use as a post-processing tool to improve epidemic forecasts.Author summary: Epidemics of infectious disease cause millions of deaths worldwide each year, and reliable epidemic forecasts can allow public health officials to respond to mitigate the effects of epidemics. However, because epidemic forecasting is a difficult task, many epidemic forecasts are not calibrated. Calibration is a desired property of any forecast, and we provide a post-processing method that recalibrates forecasts. We demonstrate the effectiveness of this method in improving accuracy and calibration on a wide variety of influenza forecasters. We also show a quantitative relationship between calibration and a forecaster’s expected score. Our recalibration method is a tool that any forecaster can use, regardless of model choice, to improve forecast accuracy and reliability. This work provides a bridge between forecasting theory, which rarely deals with applications in domains that are new or have little data, and some recent applications of epidemic forecasting, where forecast calibration is rarely analyzed systematically.

Suggested Citation

  • Aaron Rumack & Ryan J Tibshirani & Roni Rosenfeld, 2022. "Recalibrating probabilistic forecasts of epidemics," PLOS Computational Biology, Public Library of Science, vol. 18(12), pages 1-16, December.
  • Handle: RePEc:plo:pcbi00:1010771
    DOI: 10.1371/journal.pcbi.1010771
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010771
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010771&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    2. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    2. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    3. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    4. Simon Hirsch, 2025. "Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting," Papers 2504.02518, arXiv.org.
    5. Michael K. Adjemian & Valentina G. Bruno & Michel A. Robe, 2020. "Incorporating Uncertainty into USDA Commodity Price Forecasts," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 696-712, March.
    6. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    7. David T. Frazier & Donald S. Poskitt, 2025. "Sequential Scoring Rule Evaluation for Forecast Method Selection," Papers 2505.09090, arXiv.org.
    8. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    9. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    10. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    11. Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
    12. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    13. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    14. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    15. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    17. Tsyplakov, Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," MPRA Paper 26908, University Library of Munich, Germany.
    18. Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," CEPR Discussion Papers 18298, C.E.P.R. Discussion Papers.
    19. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    20. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.