IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010591.html
   My bibliography  Save this article

Probabilistic program inference in network-based epidemiological simulations

Author

Listed:
  • Niklas Smedemark-Margulies
  • Robin Walters
  • Heiko Zimmermann
  • Lucas Laird
  • Christian van der Loo
  • Neela Kaushik
  • Rajmonda Caceres
  • Jan-Willem van de Meent

Abstract

Accurate epidemiological models require parameter estimates that account for mobility patterns and social network structure. We demonstrate the effectiveness of probabilistic programming for parameter inference in these models. We consider an agent-based simulation that represents mobility networks as degree-corrected stochastic block models, whose parameters we estimate from cell phone co-location data. We then use probabilistic program inference methods to approximate the distribution over disease transmission parameters conditioned on reported cases and deaths. Our experiments demonstrate that the resulting models improve the quality of fit in multiple geographies relative to baselines that do not model network topology.Author summary: The ability to create computer simulations of epidemics is important to be able to predict where and when people will be become infected, identify factors which either contribute to or slow disease spread, and test various interventions without risking real lives. However, the conclusions of experiments performed using these simulations are only meaningful in the real world if we can be sure the simulation accurately models what is happening in the real world. We study methods for fitting parameters, such as infectiousness, to real world data so that the disease simulator correctly represents the actual disease. We achieve this using probabilistic programming methods which automatically adjust the parameters of the simulator until its outputs look realistic. Our method can work on very detailed simulators which model individual people interacting at specific locations in different locales whereas other methods can only fit very simple simulators.

Suggested Citation

  • Niklas Smedemark-Margulies & Robin Walters & Heiko Zimmermann & Lucas Laird & Christian van der Loo & Neela Kaushik & Rajmonda Caceres & Jan-Willem van de Meent, 2022. "Probabilistic program inference in network-based epidemiological simulations," PLOS Computational Biology, Public Library of Science, vol. 18(11), pages 1-40, November.
  • Handle: RePEc:plo:pcbi00:1010591
    DOI: 10.1371/journal.pcbi.1010591
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010591
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010591&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    2. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    3. Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    4. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    6. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    7. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
    9. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    10. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    11. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    12. Patrick Toman & Nalini Ravishanker & Nathan Lally & Sanguthevar Rajasekaran, 2025. "Forecasting Robust Gaussian Process State Space Models for Assessing Intervention Impact in Internet of Things Time Series," Forecasting, MDPI, vol. 7(2), pages 1-20, May.
    13. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    14. Bilancia, Massimo & Dačević, Rade, 2025. "A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm," Journal of Informetrics, Elsevier, vol. 19(1).
    15. Alex Burnap & John R. Hauser & Artem Timoshenko, 2023. "Product Aesthetic Design: A Machine Learning Augmentation," Marketing Science, INFORMS, vol. 42(6), pages 1029-1056, November.
    16. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    17. Stéphane Bonhomme, 2021. "Selection on Welfare Gains: Experimental Evidence from Electricity Plan Choice," Working Papers 2021-15, Becker Friedman Institute for Research In Economics.
    18. Junming Yin & Jerry Luo & Susan A. Brown, 2021. "Learning from Crowdsourced Multi-labeling: A Variational Bayesian Approach," Information Systems Research, INFORMS, vol. 32(3), pages 752-773, September.
    19. Jeong, Kuhwan & Chae, Minwoo & Kim, Yongdai, 2023. "Online learning for the Dirichlet process mixture model via weakly conjugate approximation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    20. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.