IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010349.html
   My bibliography  Save this article

HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis

Author

Listed:
  • James Anibal
  • Alexandre G Day
  • Erol Bahadiroglu
  • Liam O’Neil
  • Long Phan
  • Alec Peltekian
  • Amir Erez
  • Mariana Kaplan
  • Grégoire Altan-Bonnet
  • Pankaj Mehta

Abstract

Data clustering plays a significant role in biomedical sciences, particularly in single-cell data analysis. Researchers use clustering algorithms to group individual cells into populations that can be evaluated across different levels of disease progression, drug response, and other clinical statuses. In many cases, multiple sets of clusters must be generated to assess varying levels of cluster specificity. For example, there are many subtypes of leukocytes (e.g. T cells), whose individual preponderance and phenotype must be assessed for statistical/functional significance. In this report, we introduce a novel hierarchical density clustering algorithm (HAL-x) that uses supervised linkage methods to build a cluster hierarchy on raw single-cell data. With this new approach, HAL-x can quickly predict multiple sets of labels for immense datasets, achieving a considerable improvement in computational efficiency on large datasets compared to existing methods. We also show that cell clusters generated by HAL-x yield near-perfect F1-scores when classifying different clinical statuses based on single-cell profiles. Our hierarchical density clustering algorithm achieves high accuracy in single cell classification in a scalable, tunable and rapid manner.Author summary: Modern experimental techniques such as mass cytometry (CyTOF) make it possible to quickly make high-dimensional measurements on upwards of tens of millions of cells with single-cell resolution. An important problem in biology is to use these measurements to group together similar cells to identify biologically meaningful cell types that can be used to study disease progression, drug responses, and other clinical outcomes. However, the size and complexity of experimental data sets makes this problem computationally and theoretically extremely difficult. Here, we present a new algorithm HAL-X that accurately and quickly identifies cell clusters from biological data. Importantly, our algorithm does not require large amounts of memory. This eliminates the need for specialized high-end computing resources, allowing biologists to quickly analyze their data using a standard laptop or desktop computer.

Suggested Citation

  • James Anibal & Alexandre G Day & Erol Bahadiroglu & Liam O’Neil & Long Phan & Alec Peltekian & Amir Erez & Mariana Kaplan & Grégoire Altan-Bonnet & Pankaj Mehta, 2022. "HAL-X: Scalable hierarchical clustering for rapid and tunable single-cell analysis," PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-18, October.
  • Handle: RePEc:plo:pcbi00:1010349
    DOI: 10.1371/journal.pcbi.1010349
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010349
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010349&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsien-Tsung Chang & Nilamadhab Mishra & Chung-Chih Lin, 2015. "IoT Big-Data Centred Knowledge Granule Analytic and Cluster Framework for BI Applications: A Case Base Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-23, November.
    2. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    3. Paula M. Murray & Ryan P. Browne & Paul D. McNicholas, 2020. "Mixtures of Hidden Truncation Hyperbolic Factor Analyzers," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 366-379, July.
    4. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    5. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    6. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    7. Kenneth D Harris & Hannah Hochgerner & Nathan G Skene & Lorenza Magno & Linda Katona & Carolina Bengtsson Gonzales & Peter Somogyi & Nicoletta Kessaris & Sten Linnarsson & Jens Hjerling-Leffler, 2018. "Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics," PLOS Biology, Public Library of Science, vol. 16(6), pages 1-37, June.
    8. Ahonen, Ilmari & Nevalainen, Jaakko & Larocque, Denis, 2019. "Prediction with a flexible finite mixture-of-regressions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 212-224.
    9. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    10. Monica Borunda & Adrián Ramírez & Raul Garduno & Gerardo Ruíz & Sergio Hernandez & O. A. Jaramillo, 2022. "Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-25, November.
    11. Na Li & Steven Jige Quan, 2023. "Identifying urban form typologies in Seoul using a new Gaussian mixture model-based clustering framework," Environment and Planning B, , vol. 50(9), pages 2342-2358, November.
    12. Li, Zehang & Alonso Fernández, Andrés Modesto & Elías, Antonio & Morales, Juan M., 2024. "Clustering and forecasting of day-ahead electricity supply curves using a market-based distance," DES - Working Papers. Statistics and Econometrics. WS 43805, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Nicola Loperfido, 2019. "Finite mixtures, projection pursuit and tensor rank: a triangulation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 145-173, March.
    14. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    15. Peña, Daniel & Prieto Fernández, Francisco Javier & Rendon Aguirre, Janeth Carolina, 2017. "Clustering Big Data by Extreme Kurtosis Projections," DES - Working Papers. Statistics and Econometrics. WS 24522, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    17. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
    18. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
    19. Xuwen Zhu & Yana Melnykov, 2022. "On Finite Mixture Modeling of Change-point Processes," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 3-22, March.
    20. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.