IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005596.html
   My bibliography  Save this article

Inferring oscillatory modulation in neural spike trains

Author

Listed:
  • Kensuke Arai
  • Robert E Kass

Abstract

Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.Author summary: Oscillatory modulation of neural activity in the brain is widely observed under conditions associated with a variety of cognitive tasks and mental states. Within individual neurons, oscillations may be uncovered in the moment-to-moment variation in neural firing rate. This, however, is often challenging because many factors may affect fluctuations in neural firing rate and, in addition, neurons fire irregular sets of action potentials, or spike trains, due to an unknown combination of meaningful signals and extraneous noise. We have devised a statistical Latent Oscillatory Spike Train (LOST) model with accompanying model-fitting technology, that is able to detect subtle oscillations in spike trains by taking into account both spiking noise and temporal variation in the oscillation itself. The method couples two techniques developed for other purposes in the literature on Bayesian analysis. Using data simulated from theoretical neurons and real data recorded from cortical motor neurons, we demonstrate the method’s ability to track changes in the modulatory structure of the oscillation across experimental trials.

Suggested Citation

  • Kensuke Arai & Robert E Kass, 2017. "Inferring oscillatory modulation in neural spike trains," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
  • Handle: RePEc:plo:pcbi00:1005596
    DOI: 10.1371/journal.pcbi.1005596
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005596
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005596&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael M. Yartsev & Menno P. Witter & Nachum Ulanovsky, 2011. "Grid cells without theta oscillations in the entorhinal cortex of bats," Nature, Nature, vol. 479(7371), pages 103-107, November.
    2. Ayala Matzner & Izhar Bar-Gad, 2015. "Quantifying Spike Train Oscillations: Biases, Distortions and Solutions," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    3. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    4. G. Huerta & M. West, 1999. "Priors and component structures in autoregressive time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 881-899.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    3. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    4. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    5. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    6. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    7. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    8. Philippe, Anne, 2006. "Bayesian analysis of autoregressive moving average processes with unknown orders," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1904-1923, December.
    9. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    10. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    11. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    12. Harvey, A.C. & Trimbur, T.M. & van Dijk, H.K., 2004. "Bayes estimates of the cyclical component in twentieth centruy US gross domestic product," Econometric Institute Research Papers EI 2004-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Arifatus Solikhah & Heri Kuswanto & Nur Iriawan & Kartika Fithriasari, 2021. "Fisher’s z Distribution-Based Mixture Autoregressive Model," Econometrics, MDPI, vol. 9(3), pages 1-35, June.
    14. Richard Kleijn & Herman K. van Dijk, 2006. "Bayes model averaging of cyclical decompositions in economic time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 191-212.
    15. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    16. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    17. Huerta, Gabriel & Lopes, Hedibert Freitas, 2000. "Bayesian forecasting and inference in latent structure for the Brazilian Industrial Production Index," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 20(1), May.
    18. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    19. Ovielt Baltodano L'opez & Roberto Casarin, 2022. "A Dynamic Stochastic Block Model for Multi-Layer Networks," Papers 2209.09354, arXiv.org.
    20. Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.