IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002391.html
   My bibliography  Save this article

Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

Author

Listed:
  • Santiago Treviño III
  • Yudong Sun
  • Tim F Cooper
  • Kevin E Bassler

Abstract

Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect co-regulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities. Author Summary: One of the fundamental themes in biology is the hierarchical organization of its constituents. At higher levels of a hierarchy new properties emerge due to the complex interaction of constituents at lower levels. This same organization is expected to be found in genetic regulatory networks. If so, determining this hierarchal structure would aid in understanding the properties and functional processes of the networks. With the increasing availability of genetic expression data, developing methods to infer the underlying genetic regulatory network and detect functional communities within the network is an important goal of systems biology. Unfortunately, noise in expression data creates variability in the inferred network and the stochastic nature of community detection creates variability in the functional communities detected with existing methods. Here, we present methods for exploring the hierarchical organization of genetic regulatory networks that robustly detect core functional communities. We test the methods and demonstrate their validity, by applying them to Escherichia coli genetic expression data, finding a hierarchy of functionally relevant communities and then comparing those communities to the known E. coli functional groups. We then give examples of how our methods can be used to infer regulatory interactions between genes.

Suggested Citation

  • Santiago Treviño III & Yudong Sun & Tim F Cooper & Kevin E Bassler, 2012. "Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-15, February.
  • Handle: RePEc:plo:pcbi00:1002391
    DOI: 10.1371/journal.pcbi.1002391
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002391
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002391&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Qiming Lu & G. Korniss & Boleslaw Szymanski, 2009. "The Naming Game in social networks: community formation and consensus engineering," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(2), pages 221-235, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    2. Somwrita Sarkar & James A Henderson & Peter A Robinson, 2013. "Spectral Characterization of Hierarchical Network Modularity and Limits of Modularity Detection," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    2. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    3. repec:plo:pone00:0112606 is not listed on IDEAS
    4. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    5. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    6. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    7. Zhao, Zhili & Zhang, Nana & Xie, Jiquan & Hu, Ahui & Liu, Xupeng & Yan, Ruiyi & Wan, Li & Sun, Yue, 2024. "Detecting network communities based on central node selection and expansion," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    8. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    9. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    10. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.
    11. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    12. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    13. Tang, Kun & Li, Baiyang & Zhu, Qiyu & Ma, Lecun, 2024. "Disruptive content, cross agglomeration interaction, and agglomeration replacement: Does cohesion foster strength?," Journal of Informetrics, Elsevier, vol. 18(4).
    14. Giorgio Gronchi & Marco Raglianti & Fabio Giovannelli, 2021. "Network Theory and Switching Behaviors: A User Guide for Analyzing Electronic Records Databases," Future Internet, MDPI, vol. 13(9), pages 1-12, August.
    15. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    16. Shen Wang & Jun Wu & Yutao Zhang, 2018. "Consumer preference–enabled intelligent energy management for smart cities using game theoretic social tie," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    17. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2011. "Niche as a Determinant of Word Fate in Online Groups," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    18. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    19. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    20. Jia, Chun-Xiao & Liu, Run-Ran, 2025. "Cascading dynamics in double-layer hypergraphs with higher-order inter-layer interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    21. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.