IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000930.html
   My bibliography  Save this article

Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

Author

Listed:
  • Sheng Zhang
  • Miguel P Eckstein

Abstract

A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways.Author Summary: The brain has two processing pathways of visual information, the ventral and dorsal streams. A prevailing theory proposes that this division leads to different world representations for conscious perception than those for actions such as grasping or eye movements. Perceptual tasks such as searching for our car keys in a living room requires the brain to coordinate eye movement actions to point the high resolution center of the eye, the fovea, to regions of interest in the scene to extract information used for a subsequent decision, such as identifying or localizing the keys. Does having different neural representations of the world for eye movement actions and perception have any costs for performance during visual search? We use computer vision algorithms that simulate components of the human visual system with the two separate processing streams and search for simple targets added to thousands of natural images. We simulate the process of evolution to show that the neural mechanisms of the perception and action processing streams co-evolve similar representations of the target suggesting that discrepancies in the neural representations of the world for perception and eye movements lead to lower visual search performance and are not favored by evolution.

Suggested Citation

  • Sheng Zhang & Miguel P Eckstein, 2010. "Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
  • Handle: RePEc:plo:pcbi00:1000930
    DOI: 10.1371/journal.pcbi.1000930
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000930
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000930&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. H. Snyder & A. P. Batista & R. A. Andersen, 1997. "Coding of intention in the posterior parietal cortex," Nature, Nature, vol. 386(6621), pages 167-170, March.
    2. Jiri Najemnik & Wilson S. Geisler, 2005. "Optimal eye movement strategies in visual search," Nature, Nature, vol. 434(7031), pages 387-391, March.
    3. Michele Rucci & Ramon Iovin & Martina Poletti & Fabrizio Santini, 2007. "Miniature eye movements enhance fine spatial detail," Nature, Nature, vol. 447(7146), pages 852-855, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emre Akbas & Miguel P Eckstein, 2017. "Object detection through search with a foveated visual system," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadav Ben-Shushan & Nimrod Shaham & Mati Joshua & Yoram Burak, 2022. "Fixational drift is driven by diffusive dynamics in central neural circuitry," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Frederick Callaway & Antonio Rangel & Thomas L Griffiths, 2021. "Fixation patterns in simple choice reflect optimal information sampling," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-29, March.
    3. Glimcher, Paul W. & Dorris, Michael C. & Bayer, Hannah M., 2005. "Physiological utility theory and the neuroeconomics of choice," Games and Economic Behavior, Elsevier, vol. 52(2), pages 213-256, August.
    4. Hang Zhang & Camille Morvan & Louis-Alexandre Etezad-Heydari & Laurence T Maloney, 2012. "Very Slow Search and Reach: Failure to Maximize Expected Gain in an Eye-Hand Coordination Task," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    5. Timothy N Rubin & Oluwasanmi Koyejo & Krzysztof J Gorgolewski & Michael N Jones & Russell A Poldrack & Tal Yarkoni, 2017. "Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-24, October.
    6. Camille Morvan & Laurence T Maloney, 2012. "Human Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-11, February.
    7. Emre Akbas & Miguel P Eckstein, 2017. "Object detection through search with a foveated visual system," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-28, October.
    8. Joseph Snider & Dongpyo Lee & Howard Poizner & Sergei Gepshtein, 2015. "Prospective Optimization with Limited Resources," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-28, September.
    9. Constantin Carapencea & Irina Mocanu, 2015. "Real-Time Gaze Tracking With A Single Camera," Romanian Economic Business Review, Romanian-American University, vol. 9(1), pages 37-49, May.
    10. Michel Wedel & Rik Pieters & Ralf Lans, 2023. "Modeling Eye Movements During Decision Making: A Review," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 697-729, June.
    11. Sang-Hoon Yeo & David W Franklin & Daniel M Wolpert, 2016. "When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-22, December.
    12. Niklas Wilming & Simon Harst & Nico Schmidt & Peter König, 2013. "Saccadic Momentum and Facilitation of Return Saccades Contribute to an Optimal Foraging Strategy," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.