IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62151-9.html
   My bibliography  Save this article

Artificial transneurons emulate neuronal activity in different areas of brain cortex

Author

Listed:
  • Rivu Midya

    (University of Massachusetts
    Texas A&M University)

  • Ambarish S. Pawar

    (Salk Institute for Biological Studies)

  • Debi P. Pattnaik

    (Loughborough University)

  • Eric Mooshagian

    (University of California San Diego)

  • Pavel Borisov

    (Loughborough University)

  • Thomas D. Albright

    (Salk Institute for Biological Studies)

  • Lawrence H. Snyder

    (Washington University School of Medicine)

  • R. Stanley Williams

    (Texas A&M University)

  • J. Joshua Yang

    (University of Massachusetts
    University of Southern California)

  • Alexander G. Balanov

    (Loughborough University)

  • Sergei Gepshtein

    (Salk Institute for Biological Studies)

  • Sergey E. Savel’ev

    (Loughborough University)

Abstract

Rapid development of memristive elements emulating biological neurons creates new opportunities for brain-like computation at low energy consumption. A first step toward mimicking complex neural computations is the analysis of single neurons and their characteristics. Here we measure and model spiking activity in artificial neurons built using diffusive memristors. We compare activity of these artificial neurons with the spiking activity of biological neurons measured in sensory, pre-motor, and motor cortical areas of the monkey (male) brain. We find that artificial neurons can operate in diverse self-sustained and noise-induced spiking regimes that correspond to the activity of different types of cortical neurons with distinct functions. We demonstrate that artificial neurons can function as trans-functional devices (transneurons) that reconfigure their behaviour to attain instantaneous computational needs, each capable of emulating several biological neurons.

Suggested Citation

  • Rivu Midya & Ambarish S. Pawar & Debi P. Pattnaik & Eric Mooshagian & Pavel Borisov & Thomas D. Albright & Lawrence H. Snyder & R. Stanley Williams & J. Joshua Yang & Alexander G. Balanov & Sergei Gep, 2025. "Artificial transneurons emulate neuronal activity in different areas of brain cortex," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62151-9
    DOI: 10.1038/s41467-025-62151-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62151-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62151-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suhas Kumar & R. Stanley Williams & Ziwen Wang, 2020. "Third-order nanocircuit elements for neuromorphic engineering," Nature, Nature, vol. 585(7826), pages 518-523, September.
    2. Sergey E. Savel’ev & Fabio Marchesoni & Alexander M. Bratkovsky, 2013. "Mesoscopic resistive switch: non-volatility, hysteresis and negative differential resistance," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(12), pages 1-6, December.
    3. Kamal Abu-Hassan & Joseph D. Taylor & Paul G. Morris & Elisa Donati & Zuner A. Bortolotto & Giacomo Indiveri & Julian F. R. Paton & Alain Nogaret, 2019. "Optimal solid state neurons," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Mingyi Rao & Hao Tang & Jiangbin Wu & Wenhao Song & Max Zhang & Wenbo Yin & Ye Zhuo & Fatemeh Kiani & Benjamin Chen & Xiangqi Jiang & Hefei Liu & Hung-Yu Chen & Rivu Midya & Fan Ye & Hao Jiang & Zhong, 2023. "Thousands of conductance levels in memristors integrated on CMOS," Nature, Nature, vol. 615(7954), pages 823-829, March.
    5. Wei Yi & Sergey E. Savel'ev & Gilberto Medeiros-Ribeiro & Feng Miao & M.-X. Zhang & J. Joshua Yang & Alexander M. Bratkovsky & R. Stanley Williams, 2016. "Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    6. Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    7. Hao Jiang & Daniel Belkin & Sergey E. Savel’ev & Siyan Lin & Zhongrui Wang & Yunning Li & Saumil Joshi & Rivu Midya & Can Li & Mingyi Rao & Mark Barnell & Qing Wu & J. Joshua Yang & Qiangfei Xia, 2017. "A novel true random number generator based on a stochastic diffusive memristor," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    8. Ming Wang & Chong Bi & Ling Li & Shibing Long & Qi Liu & Hangbing Lv & Nianduan Lu & Pengxiao Sun & Ming Liu, 2014. "Thermoelectric Seebeck effect in oxide-based resistive switching memory," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    9. L. H. Snyder & A. P. Batista & R. A. Andersen, 1997. "Coding of intention in the posterior parietal cortex," Nature, Nature, vol. 386(6621), pages 167-170, March.
    10. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    2. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Junpeng Ji & Dace Gao & Han-Yan Wu & Miao Xiong & Nevena Stajkovic & Claudia Latte Bovio & Chi-Yuan Yang & Francesca Santoro & Deyu Tu & Simone Fabiano, 2025. "Single-transistor organic electrochemical neurons," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Ushakov, Yury & Balanov, Alexander & Savel’ev, Sergey, 2021. "Role of noise in spiking dynamics of diffusive memristor driven by heating-cooling cycles," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Wojtusiak, A.M. & Balanov, A.G. & Savel’ev, S.E., 2021. "Intermittent and metastable chaos in a memristive artificial neuron with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Shaochuan Chen & Zhen Yang & Heinrich Hartmann & Astrid Besmehn & Yuchao Yang & Ilia Valov, 2025. "Electrochemical ohmic memristors for continual learning," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    12. Kyung Seok Woo & Jaehyun Kim & Janguk Han & Woohyun Kim & Yoon Ho Jang & Cheol Seong Hwang, 2022. "Probabilistic computing using Cu0.1Te0.9/HfO2/Pt diffusive memristors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Yuanquan Huang & Qiqiao Wu & Tiancheng Gong & Jianguo Yang & Qing Luo & Ming Liu, 2025. "Bayesian neural network with unified entropy source and synapse weights using 3D 16-layer Fe-diode array," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Yang, Yukaichen & Xu, Xiang & Si, Gangquan & Xu, Minglin & Li, Chenhao & Xie, Ruicheng, 2025. "Neuromorphic dynamics and behavior synchronization of fractional-order memristive synapses," Chaos, Solitons & Fractals, Elsevier, vol. 197(C).
    17. Jinshi Li & Pingchuan Shen & Zeyan Zhuang & Junqi Wu & Ben Zhong Tang & Zujin Zhao, 2023. "In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Zhou, Wei & Jin, Peipei & Dong, Yujiao & Liang, Yan & Wang, Guangyi, 2023. "Memristor neurons and their coupling networks based on Edge of Chaos Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Kyung Seok Woo & Alan Zhang & Allison Arabelo & Timothy D. Brown & Minseong Park & A. Alec Talin & Elliot J. Fuller & Ravindra Singh Bisht & Xiaofeng Qian & Raymundo Arroyave & Shriram Ramanathan & Lu, 2024. "True random number generation using the spin crossover in LaCoO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Xi Zhou & Liang Zhao & Chu Yan & Weili Zhen & Yinyue Lin & Le Li & Guanlin Du & Linfeng Lu & Shan-Ting Zhang & Zhichao Lu & Dongdong Li, 2023. "Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62151-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.