IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07052-w.html
   My bibliography  Save this article

Biological plausibility and stochasticity in scalable VO2 active memristor neurons

Author

Listed:
  • Wei Yi

    (HRL Laboratories)

  • Kenneth K. Tsang

    (HRL Laboratories)

  • Stephen K. Lam

    (HRL Laboratories)

  • Xiwei Bai

    (HRL Laboratories)

  • Jack A. Crowell

    (HRL Laboratories)

  • Elias A. Flores

    (HRL Laboratories)

Abstract

Neuromorphic networks of artificial neurons and synapses can solve computationally hard problems with energy efficiencies unattainable for von Neumann architectures. For image processing, silicon neuromorphic processors outperform graphic processing units in energy efficiency by a large margin, but deliver much lower chip-scale throughput. The performance-efficiency dilemma for silicon processors may not be overcome by Moore’s law scaling of silicon transistors. Scalable and biomimetic active memristor neurons and passive memristor synapses form a self-sufficient basis for a transistorless neural network. However, previous demonstrations of memristor neurons only showed simple integrate-and-fire behaviors and did not reveal the rich dynamics and computational complexity of biological neurons. Here we report that neurons built with nanoscale vanadium dioxide active memristors possess all three classes of excitability and most of the known biological neuronal dynamics, and are intrinsically stochastic. With the favorable size and power scaling, there is a path toward an all-memristor neuromorphic cortical computer.

Suggested Citation

  • Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07052-w
    DOI: 10.1038/s41467-018-07052-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07052-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07052-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Liu & Pek Jun Tiw & Teng Zhang & Yanghao Wang & Lei Cai & Rui Yuan & Zelun Pan & Wenshuo Yue & Yaoyu Tao & Yuchao Yang, 2024. "VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Rui Yuan & Pek Jun Tiw & Lei Cai & Zhiyu Yang & Chang Liu & Teng Zhang & Chen Ge & Ru Huang & Yuchao Yang, 2023. "A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Zhou, Wei & Jin, Peipei & Dong, Yujiao & Liang, Yan & Wang, Guangyi, 2023. "Memristor neurons and their coupling networks based on Edge of Chaos Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Kafraj, Mohadeseh Shafiei & Parastesh, Fatemeh & Jafari, Sajad, 2020. "Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    6. Li, Xing & Zou, Jianxun & Feng, Zhe & Wu, Zuheng & Xu, Zuyu & Yang, Fei & Zhu, Yunlai & Dai, Yuehua, 2023. "Thermal design engineering for improving the variation of memristor threshold," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xi Zhou & Liang Zhao & Chu Yan & Weili Zhen & Yinyue Lin & Le Li & Guanlin Du & Linfeng Lu & Shan-Ting Zhang & Zhichao Lu & Dongdong Li, 2023. "Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Ushakov, Yury & Balanov, Alexander & Savel’ev, Sergey, 2021. "Role of noise in spiking dynamics of diffusive memristor driven by heating-cooling cycles," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Andreeva, N.V. & Turalchuk, P.A. & Chigirev, D.A. & Vendik, I.B. & Ryndin, E.A. & Luchinin, V.V., 2021. "Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    13. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    14. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07052-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.